6.1100 Spring 2024 Miniquiz #2

There are 3 pages. Please submit your answers on Gradescope by Feb 22nd, 2024, 11:59pm.

Name:

Email:

1. Left recursion

Consider the following grammar. E, T, and F are non-terminals. +, \times , (,), and id are terminals.

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T \times F$$

$$F \rightarrow (E) \mid id$$

Eliminate left recursion in this grammar using the method taught in lecture.

Introduce new non-terminals as necessary.

2. Left factoring

Consider the following grammar. P, E, and T are non-terminals. +, [], and [] are terminals.

$$P \rightarrow \underline{\mathbf{I}} E \underline{\mathbf{1}}$$

$$E \rightarrow T \mid T + E$$

$$T \rightarrow \mathbf{a}$$

Perform left-factoring to eliminate common prefixes.

3. Constraint propagation

Consider the following grammar. A, B, C, E, and P are non-terminals. $\underline{\Gamma}$, $\underline{\Gamma}$

$$P \rightarrow E (C)$$

$$E \rightarrow A B$$

$$A \rightarrow \mathbf{a} \mid \varepsilon$$

$$B \rightarrow \mathbf{b} \mid \varepsilon$$

$$C \rightarrow \mathbf{c} \mid \varepsilon$$

Compute the following.

- a. The set **Nullable** = {NT : NT is a non-terminal that is able to derive ε }.
- b. For each non-terminal NT, the set

First(NT) = {T: T is a terminal that may appear at the left of a string derived from NT}

Now, we define, for each non-terminal NT,

Follow(NT) = {T: T is a terminal that may appear directly after an expanded NT term in <u>any</u> valid derivation from the starting symbol}.

For example, we can show that $\mathbf{\zeta} \in \mathbf{Follow}(A)$. Consider the following derivation:

$$P \rightarrow E(C) \rightarrow AB(C) \rightarrow aB(C) \rightarrow a(C) \rightarrow a(c)$$
.

The token $\underline{\boldsymbol{\zeta}}$ directly follows \boldsymbol{a} which is expanded from A. (B is expanded into an empty string.)

c. (Bonus problem; Optional) Compute Follow(NT) for all non-terminal NT.