
6.1100 Spring 2024 Miniquiz #4
Please submit your answers on Gradescope by March 7th, 2024, 11:59pm.

Name:

Email:

1. x86 Introduction

Ben Bitdidle is trying to find his favorite number in a list of numbers. He has started writing a

x86 assembly program to do this. He has completed most of his program:

find_magic_num(unsigned int*, int):
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq #1 .
movl $-1, %ebx
#2 . %esi, %esi

jle .LBB2_5
movq %rdi, %r14
movl %esi, %r15d
xorl %r12d, %r12d
xorl %r13d, %r13d

.LBB2_3:
addl %r12d, %r13d
movl (%r14,%r12,4), #3 .
callq popcnt(unsigned int)

#4 .
je .LBB2_4
incq %r12
cmpq %r12, %r15
jne .LBB2_3
jmp .LBB2_5

.LBB2_4:
movl %r13d, %ebx

(Continued on the next page.)

.LBB2_5:
movl %ebx, %eax
popq %rbx

#5 .
retq

But as you can see, some parts of his program are incomplete. He would like your help to

complete it! The final program should be equivalent to the following C code:

int find_magic_num(unsigned int* y, int N) {
int x = 0;
for (int i = 0; i < N; i++) {

x += i;
if (popcnt(y[i]) == 4) {

return x;
}

}
return -1;

}

He wants his code to follow the x86 calling convention and was told that the popcount()

also follows this convention. He also knows that #1 should be a register, #2 should be a x86

instruction name, #3 should be a register, #4 should be one x86 instruction, and #5 should be

four x86 instructions.

#1:

#2:

#3:

#4:

#5:

2. Stacks and Addressing

Excited by the success of his magic numbers program, he wants to move on to more advanced

programs that use the stack. He is writing a program that is equivalent to the following C

function:

1 int histogram(unsigned int* x, int N) {
2 int freq[100];
3 for (int i = 0; i < N; i++) {
4 if (x[i] > 98) {
5 freq[99]++;
6 } else {
7 freq[x[i]]++;
8 }
9 }
10 return 0;
11 }

This is what he has written so far:

1 histogram(unsigned int*, int):
2 testl %esi, %esi
3 jle .LBB3_4
4 subq $280, %rsp
5 leaq 268(%rsp), %rax
6 movl %esi, %ecx
7 xorl %edx, %edx
8 .LBB3_2:
9 movl #1 , %esi
10 cmpq $99, %rsi
11 leaq #2 , %rsi
12 cmovaeq %rax, %rsi
13 incl (%rsi)
14 incq %rdx
15 cmpq %rdx, %rcx
16 jne .LBB3_2
17 addq #3 , %rsp
18 .LBB3_4:
19 xorl %eax, %eax
20 retq

(Questions are on the next page.)

a. Which instruction allocates space on the stack? (Use the line numbers)

b. How is instruction on line 10 being used in the code? Which other instruction makes use

of the change in the status register, and how?

c. What C code line(s) does assembly line 13 best correspond to?

d. What should he put in place of #1?

e. What should he put in place of #2? (Note: you can assume red zones)

f. What should he put in place of #3?

