## 6.1100 Spring 2024 Miniquiz #6

Please submit your answers on Gradescope by April 11th, 2024, 11:59pm.

Name: 6.110 Staff

Email: 6.110-staff@mit.edu

Note: This miniquiz covers loop optimizations and parallelization. We will cover register allocation in a later miniquiz.

## 1. Loop Optimizations

(For part a. and b.)

In the following control flow graph, **A** is the entry node and **I** is the exit node.



a. Draw the **dominator tree** of this control flow graph.



b. There are two loops in this control flow graph. Fill in the information about each loop in the table below.

| Loop header | Nodes in loop |
|-------------|---------------|
| В           | B, D, G       |
| F           | F, H          |

(For part c.-f.)

Consider the following program.

```
1  x = 0;
y = 5;
while (x < 10) {
    x = x + 1;
    a = y * y;
    z = 8 * x + 24;
    printf("%d %d\n", a, z);
    }
}
```

c. Which line of code is **loop-invariant**? (Give the line number)

Line 5.

- d. Which variable is the base induction variable?
- x is the base induction variable.
  - e. Which variable is a derived induction variable?
- z is a derived induction variable, with triple <x, 8, 24>.
  - f. Rewrite the program after **loop invariant code motion** and **induction variable optimizations** mentioned in class.

```
1  z = 24;
2  y = 5;
3  a = y * y;
4  while (z < 104) {
5     z = z + 8;
6     printf("%d %d\n", a, z);
7  }</pre>
```

## 2. Parallelization

Consider the following loops, where A[i, j] refers to the element in the i-th row and j-th column in a two-dimensional array.

```
for (i = 0; i < n; i += 1) {
   for (j = 0; j < i; j += 1) {
      A[i, j] = A[i, j - 2] + 3;
   }
}</pre>
```

a. Assume n = 4. In the grid below, circle the **iteration space** for the loops and draw the **distance vectors**. You may ignore out-of-range cases.



b. What is the **distance vector** for these loops?

$$dv = [0, 2]$$

c. Which of the loops (inner and/or outer) can be parallelized into a for-all loop?

Only the outer loop (the i loop) can be parallelized into a for-all loop.