6.1100 Spring 2024 Miniquiz #7

Please submit your answers on Gradescope by April 25th, 2024, 11:59pm.

Name: 6.110 Staff

Email: 6.110-staff@mit.edu

1. Lattices

Let *L* be the lattice given by the set $\{1, 2, 3, 4, 6, 12\}$, and ordered by divisibility. In other words, we say $a \le b$ as lattice elements if a divides b.

a. Draw a **Hasse diagram** for this lattice.

b. Is this lattice complete? (Circle one:)

c. What is the **top** element in this lattice?

d. What is the **bottom** element in this lattice?

e. Evaluate the following expressions in this lattice:

Expression	Value (fill in)	Expression	Value (fill in)
4 ∧ 3 =	1	3 ∨ (6 ∧ 4) =	6
4 V 3 =	12	3 ∧ (6 ∨ 4) =	3

Yes / No

2. Sign Analysis

This problem is about sign analysis using the following **base lattice**.

Suppose that the analysis tracks the signs of variables \mathbf{x} , \mathbf{y} , and \mathbf{z} , so that the actual lattice used in the analysis contains elements of the form $[\mathbf{x} \to s_1, \mathbf{y} \to s_2, \mathbf{z} \to s_3]$, where s_1, s_2, s_3 are elements of the base lattice.

a. The transfer function of a statement x = y + z using this lattice is given by

$$f([\mathbf{x} \to \mathsf{s}_1, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]) = [\mathbf{x} \to \mathsf{s}_2 \oplus \mathsf{s}_3, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]$$

for some binary operation \oplus on the elements of the base lattice. Complete the following table that defines the operation \oplus .

⊕	Т	-	0	+	Т
Т	Т	Т	Т	Т	Т
_	Т	-	-	Т	Т
0	Т	-	0	+	Т
+	Т	Т	+	+	Т
Т	Т	Т	Т	Т	Т

b. Fill in the blanks below in the transfer function of a statement y = x.

$$f([\mathbf{x} \to s_1, \mathbf{y} \to s_2, \mathbf{z} \to s_3]) = [\mathbf{x} \to s_1, \mathbf{y} \to s_1, \mathbf{z} \to s_3]$$

Suppose we are performing sign analysis on the following CFG.

c. According to our sign analysis, what is the lattice point associated to the program point after the node $\mathbf{z} = \mathbf{x} + \mathbf{y}$? (Fill in the blanks below.)

$$[x \rightarrow +, y \rightarrow \top, z \rightarrow \top]$$

d. As a human, what is the most precise sign information that you can determine for the program point after the node z = x + y? (Fill in the blanks below.)

$$[x \rightarrow +, y \rightarrow \top, z \rightarrow +]$$