6.1100 Spring 2024 Miniquiz #7 Please submit your answers on Gradescope by April 25th, 2024, 11:59pm. | Name: | | | | | | | | | |--|-----------------|---------------|-----------------|--|--|--|--|--| | Email: | | | | | | | | | | 1. Lattices | | | | | | | | | | Let L be the lattice given by the set $\{1, 2, 3, 4, 6, 12\}$, and ordered by divisibility. In other words, we say $a \le b$ as lattice elements if a divides b . | | | | | | | | | | a. Draw a Hasse diagram for this lattice. | b. Is this lattice complete? (Circle one:) Yes / No | | | | | | | | | | c. What is the top element in this lattice? | | | | | | | | | | d. What is the bottom element in this lattice? | | | | | | | | | | e. Evaluate the following expressions in this lattice: | | | | | | | | | | Expression | Value (fill in) | Expression | Value (fill in) | | | | | | | 4 ∧ 3 = | | 3 ∨ (6 ∧ 4) = | | | | | | | | 4 V 3 = | | 3 ∧ (6 V 4) = | | | | | | | ## 2. Sign Analysis This problem is about sign analysis using the following **base lattice**. Suppose that the analysis tracks the signs of variables \mathbf{x} , \mathbf{y} , and \mathbf{z} , so that the actual lattice used in the analysis contains elements of the form $[\mathbf{x} \to s_1, \mathbf{y} \to s_2, \mathbf{z} \to s_3]$, where s_1, s_2, s_3 are elements of the base lattice. a. The transfer function of a statement x = y + z using this lattice is given by $$f([\mathbf{x} \to \mathsf{s}_1, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]) = [\mathbf{x} \to \mathsf{s}_2 \oplus \mathsf{s}_3, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]$$ for some binary operation \oplus on the elements of the base lattice. Complete the following table that defines the operation \oplus . | ⊕ | Т | - | 0 | + | Т | |----------|---|---|---|---|---| | Т | Т | Т | Т | Т | Т | | - | Т | | | | Т | | 0 | Т | | | | Т | | + | Т | | | | Т | | Т | Т | Т | Т | Т | Т | b. Fill in the blanks below in the transfer function of a statement y = x. $$f([\mathbf{x} \rightarrow \mathsf{s}_1, \mathbf{y} \rightarrow \mathsf{s}_2, \mathbf{z} \rightarrow \mathsf{s}_3]) = [\mathbf{x} \rightarrow ____, \mathbf{y} \rightarrow ____, \mathbf{z} \rightarrow ___]$$ Suppose we are performing sign analysis on the following CFG. c. According to our sign analysis, what is the lattice point associated to the program point after the node z = x + y? (Fill in the blanks below.) $$[\mathbf{x} \rightarrow ____, \, \mathbf{y} \rightarrow ____, \, \mathbf{z} \rightarrow ____]$$ d. As a human, what is the most precise sign information that you can determine for the program point after the node z = x + y? (Fill in the blanks below.) $$[\mathbf{x} \rightarrow ____, \, \mathbf{y} \rightarrow ____, \, \mathbf{z} \rightarrow ____]$$