6.1100 Spring 2024 Miniquiz #7

Please submit your answers on Gradescope by April 25th, 2024, 11:59pm.

Name:								
Email:								
1. Lattices								
Let L be the lattice given by the set $\{1, 2, 3, 4, 6, 12\}$, and ordered by divisibility. In other words, we say $a \le b$ as lattice elements if a divides b .								
a. Draw a Hasse diagram for this lattice.								
b. Is this lattice complete? (Circle one:) Yes / No								
c. What is the top element in this lattice?								
d. What is the bottom element in this lattice?								
e. Evaluate the following expressions in this lattice:								
Expression	Value (fill in)	Expression	Value (fill in)					
4 ∧ 3 =		3 ∨ (6 ∧ 4) =						
4 V 3 =		3 ∧ (6 V 4) =						

2. Sign Analysis

This problem is about sign analysis using the following **base lattice**.

Suppose that the analysis tracks the signs of variables \mathbf{x} , \mathbf{y} , and \mathbf{z} , so that the actual lattice used in the analysis contains elements of the form $[\mathbf{x} \to s_1, \mathbf{y} \to s_2, \mathbf{z} \to s_3]$, where s_1, s_2, s_3 are elements of the base lattice.

a. The transfer function of a statement x = y + z using this lattice is given by

$$f([\mathbf{x} \to \mathsf{s}_1, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]) = [\mathbf{x} \to \mathsf{s}_2 \oplus \mathsf{s}_3, \mathbf{y} \to \mathsf{s}_2, \mathbf{z} \to \mathsf{s}_3]$$

for some binary operation \oplus on the elements of the base lattice. Complete the following table that defines the operation \oplus .

⊕	Т	-	0	+	Т
Т	Т	Т	Т	Т	Т
-	Т				Т
0	Т				Т
+	Т				Т
Т	Т	Т	Т	Т	Т

b. Fill in the blanks below in the transfer function of a statement y = x.

$$f([\mathbf{x} \rightarrow \mathsf{s}_1, \mathbf{y} \rightarrow \mathsf{s}_2, \mathbf{z} \rightarrow \mathsf{s}_3]) = [\mathbf{x} \rightarrow ____, \mathbf{y} \rightarrow ____, \mathbf{z} \rightarrow ___]$$

Suppose we are performing sign analysis on the following CFG.

c. According to our sign analysis, what is the lattice point associated to the program point after the node z = x + y? (Fill in the blanks below.)

$$[\mathbf{x} \rightarrow ____, \, \mathbf{y} \rightarrow ____, \, \mathbf{z} \rightarrow ____]$$

d. As a human, what is the most precise sign information that you can determine for the program point after the node z = x + y? (Fill in the blanks below.)

$$[\mathbf{x} \rightarrow ____, \, \mathbf{y} \rightarrow ____, \, \mathbf{z} \rightarrow ____]$$