
Quiz 1
6.035 Spring 2023 March 17, 2023

Before starting the quiz, write your name on this page.
There are 5 problems on this quiz. It is 13 pages long; make sure you have the whole

quiz. You will have 50 minutes in which to work on the problems. You will likely find some
problems easier than others; read all problems before beginning to work, and use your time
wisely. The quiz is worth 58 points total. The point breakdown for the parts of each problem
is printed with the problem. Some of the problems have several parts, so make sure you do
all of them!

This is an open-book quiz. You may use a laptop to access anything on or directly linked
to from the course website. You may also use any handwritten notes. You may not use the
broader internet, any search engines, large language models, or other resources.

Do all written work on the quiz itself. If you are running low on space, write on the back
of the quiz sheets and be sure to write (OVER) on the front side. It is to your advantage
to show your work — we will award partial credit for incorrect solutions that are headed in
the right direction. If you feel rushed, try to write a brief statement that captures key ideas
relevant to the solution of the problem.

Name

Kerberos

1

6. 110 Staff

6 . 110-staff

Name Kerberos 2

Problem Points Score Grader
1 12
2 10
3 10
4 12
5 14

Total 58

Name Kerberos 3

1. True/False [12 pts] (parts a–f)

a. There exist adversarial NFAs (nondeterministic finite automata) which cannot be
converted to DFAs (deterministic finite automata).

b. The values in a shift-reduce parser’s symbol stack evolve from lower-level elements
(closer to leaf nodes) of the parse tree to higher-level elements (closer to the root
node) of the parse tree over the course of parsing.

c. In the Decaf language, the symbol tables in the IR must be written to and read
from during program run time, because the compiler cannot know about variable
descriptors at compile time.

d. According to Professor Rinard’s recommendation, most semantic checks should
be performed while building the parse tree.

e. In the Decaf language, an expression computing an integer can result in a CFG
(control flow graph) with multiple distinct nodes and edges.

f. The register that holds the return value of a function is a callee-save register.

F

F

F

T

I F

% rax

Example : a = f) < &84)

Name Kerberos 4

2. Lexing [10 pts] (parts a–c)

Consider the following regular expression:

a*(b|(c*))d

(a) [2 pts] Yes/No:

Are the following strings in the language defined by the above regular expression?

i. abcd

ii. d

(b) [4 pts] Draw an NFA (nondeterministic finite automaton) that accepts strings
in the language defined by the above regular expression. Make sure to annotate
which states are start states and which states are accept states.

(c) [4 pts] Draw a DFA (deterministic finite automaton) that accepts strings in the
language defined by the above regular expression. Make sure to annotate which
state is the start state and which states are accept states.

-

X

~
-

a+ d

b

- 4E d
-> 1 ③->⑧

↳ x
-c

·-OA
b Od 14 &

e Of-> 51 ,2 , 37 -> \ 34

/i
↳
* c

Name Kerberos 5

3. Parsing [10 pts] (parts a–b)

Consider the following grammar, where the bolded symbols are terminals. The start
symbol is S:

S ! X a $

X ! a S

X ! b

(a) [4 pts] For the above grammar, draw the control DFA (deterministic finite
automaton) for an LR(0) shift-reduce parser like the ones built in class. Make
sure to annotate which state is the start state.

Name Kerberos 6

(b) [6 pts] Consider the following grammar, which is a slightly tweaked version of
the grammar on the previous page (still with start symbol S):

S ! a

S ! b S

S ! S c

Consider the following implementations of a top-down parser for this language.
As in class, the current input symbol is stored in the global variable token, and
the function NextToken() advances token to the next input symbol. A procedure
returns true if it successfully parsed, and false otherwise.

Which of the following implementations would correctly parse this language? Cir-
cle Correct or Incorrect for each implementation. There may be multiple or no
correct implementations.

bool parse_S() {

if (token == 'a') {

// S -> a

token = NextToken();

return true;

} else if (token == 'b') {

// S -> b S

token = NextToken();

return parse_S();

} else {

// S -> S c

if (parse_S()) {

oldToken = token;

token = NextToken();

return oldToken == 'c';

} else {

return false;

}

}

}

bool parse_S() {

if (token == 'a') {

// S -> a

token = NextToken();

return true;

} else if (token == 'b') {

// S -> b S c

token = NextToken();

if (parse_S()) {

oldToken = token;

token = NextToken();

return oldToken == 'c';

} else {

return false;

}

} else {

return false;

}

}

bool parse_S() {

if (token == 'a') {

// S -> a Sprime

token = NextToken();

return parse_Sprime();

} else if (token == 'b') {

// S -> b S

token = NextToken();

return parse_S();

} else {

return false;

}

}

bool parse_Sprime() {

if (token == 'c') {

// Sprime -> c Sprime

token = NextToken();

return parse_Sprime();

} else {

// Sprime -> epsilon

return true;

}

}

Correct / Incorrect Correct / Incorrect Correct / Incorrect

Il

(left recursion)

T FITI-

Name Kerberos 7

4. IR and Semantic Checking [12 pts] (parts a–h)

Consider the following class:

class A {
int a;
bool b;

int foo(A a, bool b) {
int c;

...
}

}

When typechecking and generating code using the methodology described in class, the
compiler starts at the local symbol table, and walks up the symbol table hierarchy
until it finds the definition of the symbol. The correct symbol table hierarchy inside
method foo is shown below:

Class A
Field Symbol Table

int a
bool b

Method foo
Parameter

Symbol Table
A a

bool b

Local
Symbol Table

int c

Unfortunately, your partner botched the implementation! They accidentally flipped the
order when generating the parameter and local symbol tables (as in below). However,
lookup in your botched compiler still starts at the local symbol table.

Class A
Field Symbol Table

int a
bool b

Method foo
Parameter

Symbol Table
A a

bool b

Local
Symbol Table

int c

↓

Correct

Wrong X

Name Kerberos 8

(a) [3 pts] Give an example of an implementation of method foo that would type
check and compile with a correct compiler but would generate a type error in your
implementation, or explain why this is not possible:

(b) [3 pts] Give an example of an implementation of method foo that would type
check and compile with your implementation but could generate incorrect output
when executed, or explain why this is not possible:

int foo (A a
,
bool b) I

return a . a ;

&

int foo CA a
,
bool 6) &

if (b) retron = i

else /return 0;

3

Name Kerberos 9

Consider the following class hierarchy:

class X {
int xa;
int xb;

}

class Y extends X {
int ya;
int yb;

Y foo(Y y) { ... }
}

class Z extends Y {
int za;
int zb;

}

Consider the following code snippets, from a language using the typing rules
discussed in class. Assume that the following variables are in scope:

• A variable x of type X

• A variable y of type Y

• A variable z of type Z

Circle Typechecks or Type Error for each snippet. There may be multiple or
no typechecking snippets.

(c) [1 pt] x = y.foo(x); Typechecks / Type Error

(d) [1 pt] y = y.foo(y); Typechecks / Type Error

(e) [1 pt] z = y.foo(z); Typechecks / Type Error

(f) [1 pt] x = y.foo(z); Typechecks / Type Error

(g) [1 pt] z = y.foo(x); Typechecks / Type Error

(h) [1 pt] z = z.foo(z); Typechecks / Type Error

foo : Y -> Y

-
-

H
+--

#
for

x -> Y -> Y + 7

Name Kerberos 10

5. Codegen [14 pts] (parts a–f)

(a) [4 pts] Consider the following Decaf code:

int foo(int p, int q) {
int x = 0;

while (x != p && p != q) {
x = x + 1;
q = q - 1;

}
return x;

}

Draw a CFG (control flow graph) of basic blocks for the above code (as written;
do not perform any optimizations). Be sure to draw identify the entry and exit
node(s) for the CFG. Draw condition checks by including the expression followed
by a question mark, with true and false edges.

-> short-circuiting

false ·
sil-false X
p

!= q ?

W#[
--↑ return X ,

exit

Name Kerberos 11

Uh oh! When building your group’s compiler for this language, your teammate
forgot to implement short circuiting: all expressions are fully evaluated.

(b) [2 pts] Give an example of standard Decaf code for which your group’s compiler
will generate code that produces incorrect outputs, or explain why this is not
possible.

(c) [2 pts] Your non-short-circuiting compiler made it all the way to the Derby!
These programs have boolean expressions that come from the following grammar:

b ! true | false | x | b == b | b != b | b&&b | b||b | !b

Give an example of code with boolean expressions exclusively from this gram-
mar for which your group’s compiler will generate code that produces incorrect
outputs, or explain why this is not possible.

in t x [57 ;

if (i < 5 00 x(i) > 0))

... Fa
cause error

1 if not short-circuited

↓ of possible - no side effects

Name Kerberos 12

Consider the following code:

int foo() {
int x = bar();
while (x < 100) {

int y = baz();
x += y;

}
return x;

}

Your task is to fill in the following x86-64 assembly skeleton by picking registers
for variables x and y that minimize the total number of pushes and pops during
execution (assuming that the loop body is executed at least 100 times), while
satisfying the calling conventions described in class. You are allowed to pick from
the following registers:

Caller-save Callee-save

%r8, %r9, %r10 %r12, %r13, %r14

Remember that in this assembly syntax, the source operand is on the left hand
side, and the destination operand is on the right hand side. For compactness,
assume we can push and pop multiple registers onto the stack with a
single push/pop instruction; if no registers are given for a push/pop
instruction, the push/pop is removed from the code.

(d) [2 pts] First, fill in the code with y stored in %r10. Your code must minimize the
total number of pushes/pops during execution (assuming that the loop body is
executed at least 100 times), while satisfying calling conventions described in class.

foo:
pushq // store callee-save registers
callq bar
movq %rax, % // store x

cond:
cmpq % , $100 // loop condition
jge end

body:
pushq // store caller-save registers
callq baz
popq // restore caller-save registers
movq %rax, %r10 // store y
addq %r10, % // add y to x
jmp cond

end:
movq % , %rax // return x
popq // restore callee-save registers
retq

!

%

r12

-12

-12

100.

[executed

> 160 times r12 I

r12
jor 12

Name Kerberos 13

(e) [2 pts] Now, fill in the code with y stored in %r14 (the code is otherwise
identical). Your code must still minimize the total number of pushes and pops
during execution (assuming that the loop body is executed at least 100 times),
while satisfying the calling conventions described in class.

foo:
pushq // store callee-save registers
callq bar
movq %rax, % // store x

cond:
cmpq % , $100 // loop condition
jge end

body:
pushq // store caller-save registers
callq baz
popq // restore caller-save registers
movq %rax, %r14 // store y
addq %r14, % // add y to x
jmp cond

end:
movq % , %rax // return x
popq // restore callee-save registers
retq

(f) [2 pts] Which of these choices for where to store y results in code with the
fewest stack pushes/pops (assuming at least 100 iterations of the loop)?

(called-saved

Yr12 ,
Y
. :14

H2

r12

loop [r12

r12
Y. r14 Yo

/

Store y in%. -10 Cor any caller-scred register

