
Quiz 1 Review Session

March 13, 2024

6.110 Computer 
Language Engineering



Quiz 1: Friday, March 15
• Quiz will be in class, worth 10% of the overall grade
• Open-book, any direct link from course website is OK except 

Godbolt, your own notes are OK, no wider internet or ChatGPT
• Covers lecture content up to yesterday’s lecture:

• Regex, context-free grammars
• Top-down parsing
• High-level IR and semantics
• Unoptimized codegen

• Past quizzes are now on course website



Regex, automata ←
Context-free grammars, top-down parsing
High-level IR and semantics
Unoptimized codegen



Regex, NFAs, DFAs
• Regular expressions, NFAs, and DFAs all have the same 

strength: they describe regular languages
• Conversion from regular expressions to NFAs: 

Thompson’s construction
• Conversion from NFAs to DFAs: states in DFAs are sets 

of states in NFAs.
• Blowup: n states in NFA → at most 2n states in DFA



Thompson's construction













NFA → DFA







Regex, automata
Context-free grammars, top-down parsing ←
High-level IR and semantics
Unoptimized codegen



Context-free grammars
•Stronger than regexes: language {anbn} is 

recognizable by a context-free grammar but not 
a regex
• Issues to worry about in parsing
• Ambiguity
• Left recursion
• Operator precedence







(a + b) x c





Ambiguity





Left factoring



Eliminating Left Recursion
• Start with productions of form

• A ®A a 
• A ® b
• a, b sequences of terminals and nonterminals that 

do not start with A
• Repeated application of A ®A a 
 builds parse tree like this:

A

aA

aA

ab



Eliminating Left Recursion
• Replacement productions

– A ®A a A ® b R  R is a new nonterminal
– A ® b  R ® a R
–    R ® e

A

aA

ab

A

b
R

a
R

a R

e

Old Parse Tree
New Parse Tree



Hacked Grammar

Original Grammar 
Fragment

Term ® Term * Int
Term ® Term / Int
Term ® Int

New Grammar Fragment
Term ® Int Term’
Term’ ® * Int Term’
Term’ ® / Int Term’
Term’ ® e



Term

Int*

Term

Int*

Int

Term

Int Term’

Int* Term’

Int* Term’

e

Parse Tree Comparisons

Original Grammar New Grammar



Precedence climbing







Regex, automata
Context-free grammars, top-down parsing
High-level IR and semantics ←
Unoptimized codegen



High-level IR
•Goal: semantic checking and program analysis
•Augment an AST with symbol tables, so that we 

can look up identifiers



Symbol tables
•Stores relevant information about each identifier

identifier → descriptor
 x   local variable id 1, type int
 f   method id 3, type bool → int



import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0) 
 {
  int x = 3;
  printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope



printf → imported method
x  → global variable, type = int
main  → method, params = [], return type = void
 x → local variable, type = int
 y → local variable, type = int 

   x → local variable, type = int
 
   

,

Symbol tables
global symbol table

symbol table

symbol table

child of

child of



import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0) 
 {
  int x = 3;
  printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope



Summary
•One symbol table per scope
• Each symbol table links to symbol table of parent 

scope
•First search for identifier in current scope
• If not found, go to parent symbol table
• If not found in any table, semantic error!



For the quiz, you should know how to:

•Explain what descriptors are and describe what 
information they contain
•Construct symbol tables for simple programs, 

including programs with simple classes
• Identify the scope of each identifier



Type compatibility
class A { 
    int x; 
}
class B extends A {
    int y; 
}

We say
•B is compatible with A
•B is a subtype of A
•B can substitute for A

(The reverse is not 
true!)



Type compatibility
class A { 
    int x; 
}
class B extends A {
    int y; 
}
B f(A a);

A a;
B b;
a.y = 1;  // invalid
b.x = 0;  // valid
a = b;    // valid 
b = a;    // invalid
a = f(b); // valid 



For the quiz, you should know how to:

•Determine what semantic checks need to be 
done for each given statement
•Perform semantic checks on a given program
•Determine compatibility of 

subclasses/superclasses



Regex, automata
Context-free grammars, top-down parsing
High-level IR and semantics 
Unoptimized codegen ←



x86-64 
assembly

push %rbp
mov  %rsp, %rbp
…

High-level IR 
(AST)

Structured 
control flow
if/else, loops, 

break, continue

Complex 
expressions
x+=y[4*z]/a

Unstructured 
control flow
jumps only!

Two-address 
code

mulq $4, %rcx

Low-level IR 
(CFG)

s = 0;
a = 4;
i = 0;
k == 0

b = 2;b = 1;

i < n

s = s + a*b;
i = i + 1; return s;

Unstructured 
control flow

edges = jumps

Three-address 
code

t1 ← 4 * z

Destructuring

Linearizing

Code 
generation



Control Flow Graph
into add(n, k) { 
 s = 0; a = 4; i = 0;
 if (k == 0) 
  b = 1;
 else 
  b = 2;
 while (i < n) { 
  s = s + a*b;
  i = i + 1;
 }
 return s;
}
 

s = 0;
a = 4;
i = 0;

k == 0

b = 2;b = 1;

i < n

s = s + a*b;
i = i + 1; return s;



Control Flow Graph

• Nodes Represent Computation
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions with

• No Branches Out Of Middle of Basic Block
• No Branches Into Middle of Basic Block
• Basic Blocks should be maximal

– Execution of basic block starts with first instruction
– Includes all instructions in basic block

• Edges Represent Control Flow



AST to CFG for If Then Else
Source Code

if (condition) { 
  code for then
} else {
  code for else
}
 

CFG for condition

CFG for elseCFG for then

no opif

condition
then code else code

IF
 

CFG
 



Short-Circuit Conditionals
• In program, conditionals have a condition written as a boolean 

expression
((i < n) && (v[i] != 0)) || i > k) 

• Semantics say should execute only as much as required to 
determine condition
– Evaluate (v[i] != 0) only if (i < n) is true
– Evaluate i > k only if ((i < n) && (v[i] != 0))  is false

• Use control-flow graph to represent this short-circuit evaluation



For the quiz, you should know:

•What is a CFG
•What are basic blocks
•What/why of short-circuiting
•How to construct a CFG for simple programs



The Call Stack
• Arguments 1 to 6 

are in:
– %rdi, %rsi, %rdx, 
– %rcx, %r8, and %r9

%rbp 
– marks the beginning 

of the current frame

%rsp
– marks top of stack

%rax
– return value

Return address

argument n
…

argument 7

local 1
…

local m

Previous %rbp

Variable size

0(%rbp)

-8(%rbp)

-8*n-8(%rbp)

8(%rbp)

16(%rbp)

8*n+16(%rbp)

Pr
ev

io
us

C
ur

re
nt

parameter 1
…

parameter n

0(%rsp)
-8*(m+n)-8(%rbp)



Questions

• Why allocate activation records on a stack? 
• Why not statically preallocate activation records?
• Why not dynamically allocate activation records in the heap?



Allocate space for parameters/locals

• Each parameter/local has its own slot on stack
• Each slot accessed via %rbp negative offset
• Iterate over parameter/local descriptors
• Assign a slot to each parameter/local 



• Push base pointer (%rbp) onto stack
• Copy stack pointer (%rsp) to base pointer (%rbp)
• Decrease stack pointer by activation record size
• All done by:

enter <stack frame size in bytes>, <lexical nesting level>
enter $48, $0

• For now (will optimize later) move parameters to slots 
in activation record (top of call stack)

 movq %rdi, -24(%rbp)

Generate procedure entry prologue



• 64 bit registers (16 of them)
%rax, %rbx, %rcx, %rdx, %rdi, %rsi, %rbp, %rsp, 
%r8-%r15

• Stack pointer %rsp, base pointer %rbp
• Parameters

– First six integer/pointer parameters in 
%rdi, %rsi, %rdx, %rcx, %r8, %r9

– Rest passed on the stack
• Return value

– 64 bits or less in %rax
– Longer return values passed on the stack

x86 Register Usage



• Why have %rbp if also have %rsp?

• Why not pass all parameters in registers?
• Why not pass all parameters on stack?

• Why not pass return value in register(s) regardless of size?
• Why not pass return value on stack regardless of size?

Questions



Callee vs caller save registers

• Registers used to compute values in procedure
• Should registers have same value after procedure as before 

procedure?
– Callee save registers (must have same value)

%rsp, %rbx, %rbp, %r12-%r15
– Caller save registers (procedure can change value) %rax, %rcx, %rdx, 

%rsi, %rdi, %r8-%r11
• Why have both kinds of registers?



• Put return value in %rax
mov -32(%rbp), %rax

• Undo procedure call
– Move base pointer (%rbp) to stack pointer (%rsp)
– Pop base pointer from caller off stack into %rbp
– Return to caller (return address on stack)
– All done by

leave
ret

Generate procedure call epilogue



For the quiz, you should know:

•Basics of x86 assembly
•General principles of memory layout (what it is, 

why heap grows up and stack grows down)
•General principles of calling convention
•Why calling conventions exist, motivation for their 

tradeoffs
•What callee/caller save registers are, why you want 

both


