Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Spring 2013

Test 111

You have 50 minutes to finish this quiz.
Write your name and athena username on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them
in the order that allows you to make the most progress. If you find a question ambiguous,
be sure to write down any assumptions you make. Be neat. If we can’t understand your
answer, we can’t give you credit!

This exam is open book and open laptop. Additionally, you may access the
course website, but aside from that you may NOT USE THE NETWORK.

Please do not write in the boxes below.

I (xx/7?) | IT (xx/?7?) | III (xx/?7?) | IV (xx/7??) | Total (xx/?7)

Name:

Athena username:

I Register Allocation

In this problem you will perform register allocation for the following code. Note that each instruc-
tion is numbered. Also, assume that the variables are not used after instruction 9.

a = get_int()

b = get_int()

if (b < 0) {
a=a+b
c=1

} else {

6: c = get_int()

}

7: d=c+ 1

c=4d* a

9: print(c + 5)

gD W N

o0

1. [8 points]: Write the set of def-use chains for each variable in the program. Write
each def-use chain as number pair (d,u) where d is the number of an instruction that defines
the variable and u is the number of an instruction that uses that definition. Be sure to label
each set with the variable it corresponds to.

2. [8 points]: Write the set of webs for each variable in the program. Write each web
as the set of def-use chains that belong to the web. Be sure to label each web with a name —
for example w1y, ..., w, — and to label each set with the variable it corresponds to.

3. [6 points]: Draw the interference graph for the webs that you have identified.
Specifically, each node in your graph should represent one web and there should be an edge
between two nodes if the two webs interfere. Label each node with the name of the web it
represents.

4. [5 points]: Suppose that the architecture we are targeting for compilation has two
registers. Can we place all the variables in this code in registers? Explain why or why not
using your interference graph as part of your justification.

II Loop Optimization: Code Hoisting and Strength Reduction

Consider the following snippet of code and its control flow graph: 1: i=o0

for i = 0 ton {
(a) t0 = 1i % x;
if (t0 == 2) {

for j =0 ton { /
(b) tl = 2 * n;

(c) t2 = 37i; g t0=1%x 8: EXIT
(d) Ali, j1 = (G * t1) + t2; 1 t0 ==
}
}
} 4: j=0
T
5 J<n i=1+1
tl =2 *xn
‘t2 = 371
O1ali, §1 = (G * t1) + 2
j=3+1
5. [6 points]|: Draw the dominator tree for your control flow graph. Each node

should correspond to a basic block in your control flow graph. Label each node with the
corresponding label from the control flow graph.

6. [6 points]: Which of the labeled statements (a, b, ¢, d) are loop invariant? For each
invariant statement explain why it is invariant. Be sure to state in which loop (or loops) it is
invariant. Assume that only i, j, and A are live after the loops.

7. [4 points|: Perform loop invariant code motion on the code. Use the space below to
state to which basic block each labeled statement (if any) should move. You do not need to
provide the full code. As before, assume that only i, j, and A are live after the loops.

8. [8 points]: The code snippet contains a potentially expensive exponential operation
(t1 = 37i). Is it possible to perform strength reduction on this statement? If so, either
explain how to perform the transformation on the given control flow graph or provide the
resulting control flow graph (or code). If not, explain why not.

III Loop Optimization: Instruction Scheduling

Consider a CPU that has 1) a 2-stage pipelined memory unit (MU) that can issue one memory
instruction (load or store) per clock and 2) an ALU that can issue two arithmetic instructions (e.g.,
addition) per clock. Memory instructions take 2 cycles to complete and arithmetic instructions
take 1 cycle to complete.

Consider the following loop and a fragment of x64 code from its body:

for i = 0 ton Li: mov (%rdi,%rax), %ril1 // t1 = A[i]
Ali + 2] = A[i] + 1 L2: add $1, %ri1 // t2 =t1 + 1
L3: mov $16, %ri0
L4: add %rax, %ri10
L5: mov %ri1l, (%rdi, %ri10) // A[li + 2] = t2
L6: add $8, ‘%rax

Here mov src, dst copies a value from src to dst and add src, dst means dst += src.

9. [10 points]|: Draw the dependence DAG for the above x64 code. Be sure to use
directed edges and to label each edge with the latency required between each instruction.

10. [10 points]: Use your dependence DAG to complete the following schedule. Fill in
the schedule diagram with the remaining instructions. Note that L3 is scheduled on the ALU
because it loads an immediate value into a register and does not access memory.

Clock

MU Stage 1 L1

Stage 2

ALU L3

11. [0 points]: (BONUS - 5 points)

We cannot use the distance vector method to parallelize this loop even though it is clear that
there are no dependencies between even and odd iterations.

If we unroll and register rename a second iteration of the loop, can instruction scheduling
achieve full parallelization of the adjacent iterations on our single CPU? Here full paralleliza-
tion means executing two iterations in the same number of cycles as one iteration.

If yes, provide a schedule. If no, explain why not.

IV Parallelization

In class we discussed how compilers use loop transformations like scalar privatization and loop
skewing to eliminate or change the dependencies of a loop so that the resulting loop is easily
parallelizble. In this question, we will consider two other transformations that compilers often use.

e Loop Splitting. Loop splitting splits the iteration space of a loop into a set of disjoint ranges
and creates a new loop (with the same body as the original loop) for each of the ranges. For
example, loop splitting may transform

for i = 0 to 10
£(i);

into

for i =0 to b
f(1);

for i = 5 to 10
f(1);

e Loop Fission. Loop fission splits the body of a loop into disjoint sets of statements and
creates a new loop (with the same iteration space) for each set of statements. For example,
loop fission may transform

for i =0 ton
£(i);
g(i);

into

for i 0 ton
f(i);
for i =0 ton

g(i);
For each of the loops on the next several pages, perform the following:

A. Provide the distance vectors for the original loop.

B. Identify if either loop splitting or loop fission can be used to create at least one parallelizable
loop. If yes, provide or describe the transformed code and identify which loops — including
nested loops — are parallelizable and why. If no, state why neither transformation can create
a parallelizable loop.

(continues on next page. . .)

12. [10 points]:

for i = 0 ton
A[i] = A[i] + A[0];

13.

[7 points]:

for i = 0 ton

Ali]l = A[i + 1] + A[O];

10

14.

[12 points]:

for i =1 ton

for j=1ton
Ali, jl = A[L -1, j + 1] + c;
B[i, j + 1] = B[i, jl + d;

11

