
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Fall 2017

Test II

You have 50 minutes to finish this quiz.

Write your name and athena username on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them
in the order that allows you to make the most progress. If you find a question ambiguous,
be sure to write down any assumptions you make. Be neat. If we can’t understand your
answer, we can’t give you credit!

This exam is open book and open laptop. Additionally, you may access the
course website, but aside from that you may NOT USE THE NETWORK.

Please do not write in the boxes below.

I (xx/26) II (xx/14) III (xx/28) IV (xx/20) V (xx/12) Total (xx/100)

Name:

Athena username:

1



I Movable Expressions

For some reason, you decide that you want to place the evaluation of as many expressions as you
can in the first (start) block of your control flow graph. To that end, you decide to develop a
movable expressions analysis that computes, for each expression in the program, whether it can
be moved into the first block of the control flow graph. Note that the compiler can only put an
expression in the first block if it will always be evaluated in every program execution.

You therefore define a movable expression as an expression that 1) is evaluated on all paths from
the first block to an exit block of the control flow graph and 2) has none of the operands of the
expression redefined between the end of the first block and the evaluation of the expression.

Inspired by your experience in 6.035, you decide to define a backward GEN/KILL dataflow analysis
to detect movable expressions. You recall that, in lectures, you heard about four sets for each basic
block b – GEN[b], KILL[b], IN[b], and OUT[b]. You decide to use these sets for your analysis. Here
GEN[b] is the set of movable expressions generated by the block b, KILL[b] is the set of movable
expressions killed by the block b, IN[b] is the set of movable expressions at the start of block b, and
OUT[b] is the set of movable expressions at the end of block b.

You decide to use a bit-vector representation of the sets, so that each set is represented by a bit
vector, with a position in the bit vector for each expression in the program.

1. [2 points]: What is the least upper bound ∨ for two bit vectors e1 and e2?

2



In the following code each statement is labeled with a number. Assume all variables have been
declared.

1: a = read_int();

2: b = read_int();

3: if (a > b) {

4: c = a / b;

5: d = a + b;

} else {

6: c = a / b;

7: a = a - b;

8: d = a + b;

}

2. [4 points]: Draw the control flow graph (CFG) for this program. Label each basic
block with a letter.

3



3. [16 points]: Present the analysis result that the movable expressions analysis
generates. Use the bit-vector representation, representing {a/b,a-b,a+b} as the first, second,
and third bit respectively.

A. [8 points]: Compute GEN[b] and KILL[b] for each basic block b. Fill in your bit vectors
in the table below, each row for a block b. (If the definitions for GEN and KILL permit
multiple answers, write down any such answer that ensures correct analysis for IN and
OUT.)

b GEN[b] KILL[b]

B. [8 points]: Compute the solution to the dataflow analysis problem, specifically, IN[b]
= . . . and OUT[b] = . . . for each basic block b. Fill in your bit vectors in the table below,
each row for a block b.

b IN[b] OUT[b]

4. [4 points]: After performing the analysis, what expressions can be moved to the first
block in the control flow graph?

4



II Loop Optimizations

In the following program, j is a derived induction variable in the family of the base induction
variable k.

j = 0;

k = 0;

sum = 0;

while (j < 512){

k = k + 4;

j = k*4 + 16;

sum = sum + j;

}

5. [7 points]: Rewrite the program after induction variable recognition and induction
variable strength reduction (and no other optimizations):

6. [7 points]: Rewrite the program after induction variable recognition, induction
variable strength reduction, and induction variable elimination (and no other optimizations):

5



III Maximum Analysis

In this question, you will perform an analysis on programs with multiple whole number (non-
negative integers) variables, x, y, and z, that determines the maximum value of each variable.
Programs written in this language have four kinds of statements:

• v1 = c;

• v1 = v2 + v3;

• if (...) { ... } else { ... }

• while (...) { ... }

In these statements, c is some integer constant and vi is a given variable.

At each program point, the dataflow analysis maintains a maximum value (specifically, a non-
negative integer) for each variable. Before the analysis, we initialize the dataflow information for
each variable to 0. At merge points, we update the dataflow information by computing the join of
information from all incoming edges. The join operator ∨ computes the least upper bound of the
lattice elements. For example, for a program of 3 variables x, y, and z, a join is defined by the
following:

[x→ c1, y → c2, z → c3]∨[x→ c4, y → c5, z → c6] = [x→ max (c1, c4), y → max (c2, c5), z → max (c3, c6)]

7. [4 points]: Given the join defined as above, define the partial order:

[x→ c1, y → c2, z → c3] ≤ [x→ c4, y → c5, z → c6] ⇐⇒ ??

8. [4 points]: Is the lattice complete? Explain your answer.

6



9. [4 points]: What is the transfer function fn(e) for a statement n of the form x = c?
Here e is the incoming dataflow lattice element. Your transfer function should correctly model
the semantics of the program and be as precise as possible.

fn(e) =

10. [4 points]: What is the transfer function fn(e) for a statement n of the form
z = x + y? Here e is the incoming dataflow lattice element. Your transfer function should
correctly model the semantics of the program and be as precise as possible.

fn(e) =

7



11. [8 points]: Consider the following program.

x = 0;

y = 0;

z = 0;

if (...) {

x = 4;

y = 7;

} else {

x = 6;

y = 4;

}

z = x + y;

A. [4 points]: What is the analysis result at the end of this program?

B. [4 points]: What is the meet-over-paths result at the end of this program?

8



12. [4 points]: Does the analysis always terminate? If so, explain why. If not, give an
example program or control flow graph where it fails to terminate.

9



IV Register Allocation

In this problem, you will perform register allocation for the following code. Each instruction is
labeled with a number. Assume that you do not perform any other optimizations, and none of the
variables is subsequently used.

1: x = read_int();

2: y = read_int();

3: if (x < y) {

4: z = x + y;

5: a = x + z;

} else {

6: z = x * y;

7: a = y + z;

}

8: b = a + y;

9: print (b);

13. [4 points]:

On the next page, translate this program into a CFG of def and use statements. Be sure to
include labels for each statement (block number followed by letter).

DO NOT DRAW THE CFG HERE, GO TO THE NEXT PAGE.

10



1a: def x

1b: def y

1c: use x

1d: use y

2a: 3a:

4a:

T F

11



14. [4 points]: Write the set of def-use chains for each variable in the program. Write
each def-use chain as a number pair (d, u) where d is the label of an instruction that defines
the variable and u is the label of an instruction that uses that definition (include a pair for
each use for any given definition). Use labels from your CFG in problem 13.

x:

y:

z:

a:

b:

12



15. [4 points]: Write the set of webs in the program. Write each web as the set of
instructions that belong to the web, in terms of the labels from your CFG in problem 13. We
have given you names w1-w7 for the webs, use only as many names as you need.

w1:

w2:

w3:

w4:

w5:

w6:

w7:

16. [4 points]: Draw the interference graph for the webs. Each node in the interference
graph should represent one web. There should be an edge between two nodes if the two webs
interfere. Label each node with the name (w1-w7) of the corresponding web.

13



17. [4 points]: Suppose that the architecture we are targeting for compilation has
two general purpose registers, r1 and r2. Assume that the register allocater allocates at the
granularity of variables.

A. [1 points]: Can we place all the variables in this code in registers (ignore any constraint
due to calling convention)?

B. [3 points]: If yes, specify the mapping of variables to registers. If no, specify where
in the def-use CFG in 13 you would introduce spills and loads of variables to maximize
performance.

14



V Parallelization

Consider the following program:

for (i = 1; i < n; i += 1) {

for (j = i - 1; j < n; j += 1) {

A[i, j] = A[i - 1, j + 3] - 2;

}

}

A[i, j] means the element at the i-th row and j-th column in the 2-dimensional array A. Ignore
out-of-bound array access.

18. [4 points]: Assume that n = 5. In the grid below, circle the dots that represent the
iteration space for this loop and draw the distance vectors. Ignore out-of-range cases. Each
dot represents the values of i and j for an iteration.

0 1 2 3 4

0 • • • • •

1 • • • • •

2 • • • • •

3 • • • • •

4 • • • • •

i

j

19. [4 points]: What is the distance vector for these loops?

15



20. [4 points]: Without any other optimizations or transformations, is either loop fully
parallelizable as a “FORALL” loop? If so, is it the outer loop (i), the inner loop (j), or both,
that can be parallelized? Explain your answer.

16


