6.110 Computer
Language Engineering

February 9, 2024

Before we get started...

* Recitations are new this year

* We’d appreciate your feedback! Here are some
ways to give us feedback:
* Weekly check-in forms
* Plazza posts (can be fully anonymous)

Announcements «
Weekly updates
Project overview
Phase 1 details

Re-lectures

* Re-lectures will be Wednesdays 4-6pm, starting
this upcoming Wednesday.

* Re-lectures will be recorded.

e Location TBD, look for an announcement on
Piazza by Monday.

Office Hours

* Monday 4-6pm: Tarushil
* Thursday 4-6pm: Yoland
* Friday 2-4pm: Pleng

* Friday 4-7pm: Krit

Rooms TBD, will be posted on Piazza as soon as
we get room confirmations.

Announcements
Weekly updates «
Project overview
Phase 1 details

Fresh oft the press

* Project phase 1: due
* Mini-quiz 1 and Weekly Check-in 2: due

 If you haven’t submitted Weekly Check-in 1 yet,
please do so ASAP.
* We need your GitHub account to create your phase 1
repository.
* Future assignments must be submitted on time!

Check-in 1: Colors

Check-in 1: Languages

29

27
" 24
Q
N
5
o 15
o
‘e
6
i
3 2 2
o Q¥ 4 N2 x ¢ O N
& c,d‘\Q N o o’ © 'a's‘g,
Z >

Coming up soon... Week 2

Mon Tue Wed Thu Fri
2/12 2/13 2/14 2/15 2/16
Lecture Lecture Lecture Lecture Recitation
Top-down Scanning and
parsing parsing a toy
language
Re-lecture Due: Mini-quiz,
for Week 1 weekly check-in

lectures

Announcements
Weekly updates
Project overview «
Phase 1 details

Project overview

import printf; push %rbp

. . m V O/I O/I
void main() ov %rsp, %rbp

;:N___,//’””——— -

Decaf source file x86-64 assembly

Project overview

De acuerdo con
todas las leyes
conocidas

According to
all known laws
of aviation,
there 1s no.. de la ..

IIIIIIIEIIS AND COMPLETELY
Language 1 =" s Language 2
N

"'\
\

Project overview

import printf;

void main() 3

;:~___,////”———

Decaf source file

name: a

Internal representation

push %rbp
mov %rsp, %rbp

_/—

x86-64 assembly

Project overview

import printf;

void main() 3

;:~___,////”———

Decaf source file

name: a

Internal representation

push %rbp
mov %rsp, %rbp

_/—

x86-64 assembly

Project overview

import printf;

void main() 3

Decaf source file

-

N

Phase 1. Does it have

the right structure?
(syntax)

Phase 2. Does it make

sense? (semantics)

_

/

variable |variable
name: b |name: a

name: a

name: a

Internal representation

push %xrbp
mov %rsp, %rbp

/-

x86-64 assembly

Project overview

Phase 3
code generation || push %rbp

) mov %rsp, %rbp

x86-64 assembly

import printf;

void main() 3

Decaf source file

variable |variable

name: a| name: b| |name: a

/ \ variable|

Phase 1. Does it have
the right structure?
(syntax)

Internal representation

Phase 2. Does it make
sense? (semantics)

- v

Project overview

import printf;

void main() 3

Decaf source file

4)

Phase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

\- j

Phase 3
code generation

push %xrbp
mov %rsp, %rbp

variable |variable

name: a| name: b| |name: a

name: a

Internal representation

/-

x86-64 assembly

Phase 4. What can we
learn about the
program? (dataflow
analysis)

Things we specity tor you:

 Input language (Decaf)
* OQutput language (x86-64 assembly)

« General design (scanning = parsing = semantic
checking — code generation)

e Command line interface

Features of Decat

* Imperative language, watered down version of C
— name stands for feinated C.

* Follows C semantics and calling convention.

* Types: ,

e Operations (arithmetic / boolean / comparison)
* Constant-sized arrays

* Functions

Example Decaf program

impoxrt printf;
int array[100];
void main () 3%
int 1, sum = 0O;
for (1 =0; i < len(array); i++) 1%
sum += 1;
h
printf ("%d\n", sum);

Command line interface

builds your compiler

runs your compiler,

must support the following options:

-t | --target <stage> S.pecn‘y compilation stage: scan, parse,
inter, or assembly
Write output to the specified file name. (If

o | output <outname> blank, output to stdout)
. . . Perform the listed optimizations. all means all

-0 | --opt [optimizations,..] L
optimizations, =optname removes optname.

-d | --debug Prints debug information

Announcements
Weekly updates
Project overview
Phase 1 details «

Phase 1 overview

* Goal: have a working program that can
determine whether each input Decaf code Is
syntactically valid or not.

« We split this into two subtasks: scanning and
parsing.
* What this phase doesn’t cover: semantics. Things

like type checking, bounds checking, etc. will be
done in the next phase.

Scanner

« Input: Decaf code, essentially a string
* Qutput: A list of tokens
* Example:

print

(
"Hello, World!"

)

/

print("Hello, World!"); =»

Scanner specifications

* When running
on
e Exit with return code 0 (OK)
* Outputs tokens, one per line.

* Foridentifiers rrpenTTETER print
and literals, (

also output STRINGLITERAL "Hello, World!"
the token type:)

4

Scanner specifications

* When running
on a lexically invalid input file:
 Exit with a nonzero return code (i.e. error)

* The autograder doesn’t check the output, but it’s
nice to output an error message.

Parser

* Input: A list of tokens

* Qutput: A parse tree, which 1s a data structure
that encapsulates the syntactic structure of the
program

e Example: INTLITERAL 4 "
| N
INTLITERAL 5 = 4 *
% /\

INTLITERAL 3 5 3

Parser specifications

* When running
on
e Exits with return code 0 (OK)
* Produce no output

*You can decide how you want to implement your
parse trees

Parser specifications

* When running
on a syntactically invalid input file:
 Exit with nonzero return code (i.e. error)

* Again, the autograder doesn’t check the output,
but It’s nice to output an error message.

Submission and grading

* Phase 1 is worth 5% of the overall grade, due

* Three items to be submitted on Gradescope

» Code submission (autograded)
« Scanner tests: 2%
e Parser tests: 2%

* Short report (1-2 paragraphs): 1%
* LLM questionnaire: 0% (due 3 days after deadline)

Getting started

*You should have received an invite to join the
course organization ().

* We created a repo for you.
« If you don’t have access to it, let us know ASAP.

* Make sure to accept the invite for both the
organization and the repo!

Getting started

* We have starting skeletons for Java, Scala, Rust, and
Typescript.
* The skeletons come with a build system and a barebones
iImplementation of the CLI.

 To use the skeletons, follow the instructions on the
page on the course website.

* You're also welcome to start from scratch if you'd like
to use a different build system or language (but let us
know so we can support it on the autograder!)

https://6110-sp24.github.io/skeletons
https://6110-sp24.github.io/skeletons

Testing

 Unit tests: the skeletons come with unit-testing
frameworks. (ex. Mocha for Typescript)

* It’s good practice to write your own unit tests for each
function/module you’re writing. The scanner/parser can get
pretty complex, and the test cases we provide are only end-
to-end.

* End-to-end tests: we provide public test cases in the
repository.
* You should write your own script to run these tests

Testing

* You can also submit your code on Gradescope to see
feedback on the private tests (you’ll see the test names
and whether you passed or failed them).

« We suggest doing this if you edit or to
verity that the autograder can successfully build your code.

* There Is no rate limit, but try not to overuse this.

* Try to use this only for verification purposes, and don’t
submit every single commit, for example.

* Don’t blindly try to increase your # of private tests passed.

Words of advice

 Start early!

* The project deadlines in this class are spaced out, so it’s
easy to feel like you have a lot of time ... until you don’t.

* You’ll face a lot of designh decisions.

* One specific example: do you want to use the same token
datatypes for both the scanner output and the parse tree?

* A lot of of the time, it’s usually okay either way. But if you
made a choice and got really stuck, maybe step back and
reconsider design choices.

Words of advice

 Start with a subset of the Decaf grammar.

* Dealing with the whole grammar at once can be
intimidating. Try picking a self-contained subset of it (ex.
arithmetic expressions only, or pure expressions only)

- Keep source location information.

* While we don’t require this in Phase 1, this will be required
In the next phase, and it’ll also make debugging a lot easier.

Words of advice

» Consider using existing libraries to help.
* Regex libraries are allowed and very helpful for scanning.

 If you're interested, also check out scanner/parser
generators. Our general advice Is use these If you already
knew the language well, it might be a good learning
experience to use them.

Words of advice

* The course staff is here to help!
« Come to office hours or ask on Plazza!
« We know that this project can feel pretty intimidating.

* We can give you suggestions on how to start, and we will try
to help you debug issues with your parser and scanner.

 (Note that we give you a lot of freedom on how to approach
the project, and so we might not be able to give very specific
guidance in some cases.)

