6.110 Computer
Language Engineering

February 23, 2024

Weekly updates «
Phase 2 info
Phase 2 demo

e oo £

Animals

(not to scale)

Wrapping up phase 1...

* Project phase 1 Is due today 11:59PM!!!
* We have OH from 2-7pm to help you
* LLM questionnaire due

*You are allowed to share your phase 1 code with
potential teammates after the deadline.

Coming up soon...

* Team preference form due

* Project phase 2 has been released, due
(in two weeks)

* Miniquiz 3 and Weekly Check-in 4 released, due

Mon Tue Wed Thu Fri
2/26 2/27 2/28 2/29 3/1
No lectures next week 'X‘S‘ch\tszm‘l
Lectures will resume Mon 3/4 y
OH 4-6pm Re-lecture OH 4-6pm OH 2-7pm
for Week 3
lectures
Due: Team Due: Mini-quiz,
preference weekly check-in

form

Weekly updates
Phase 2 info «
Phase 2 demo

import printf;

void main() 1

Decaf source file

Phase 2. Does it make
sense? (semantics)

_

Phase 3
code generation

name: a

name: a

Internal representation

push
mov

Phase 5. How can we
make the output code faster?

Phase 4. What can we
learn about the
program? (dataflow
analysis)

/-

x86-64 assembly

~

%xrbp
%rsp, %rbp

/

import printf;

void main() 1

Decaf source file

Phase 3
code generation

name: a

name: a

Internal representation

push
mov

Phase 5. How can we
make the output code faster?

Phase 4. What can we
learn about the
program? (dataflow
analysis)

/-

x86-64 assembly

~

%xrbp
%rsp, %rbp

/

Phase 2 overview

* Group project, in teams of 3-4. You'll keep
working with the same group for all the
remaining phases.

* Goal: have a working compiler frontend that can
determine whether each input Decaf code Is
semantically valid or not.

Team formation process

« We'll match you up with other students/groups
to form groups of 3-4.
* Matching will be based on preferred language.

* You can also opt out of the matching process, but
note that there will be a lot of work per person for
smaller groups.

Specifications

* When running
on
e Exits with return code 0 (OK)
* Produce no output

*You can decide how you want to implement your
IR and semantic checker.

Specifications

* When running
on a semantically invalid input file:

 Exit with nonzero return code (i.e. error)

* Qutputs reasonable error messages to stderr.
(should include line/column number and the
identifier that caused the error)

* We'll manually check your error messages.

* As long as they are reasonable, you'll get full credit.

Submission and grading

* Phase 2 is worth 5% of the overall grade, due

* Three items to be submitted on Gradescope

* Code submission
« Autograded tests: 2.5%
* Error messages: 1%
* Report: 1.5%
* Overview of approach, team status report, LLM

Getting started

* Once teams have been assigned, we will create
team repositories for you.
« We'll initially use a placeholder name for your team
repository.
 If you’d like to name your team, please let us know
and we’ll change your repository name.

*You are allowed to use your team members’
phase 1 code.

Suggested approach

1. Convert parse tree or AST to a high-level IR by
traversing AST nodes and constructing

2. Once you’ve finished constructing the IR,
perform by traversing your
IR.

Symbol tables

e Stores relevant information about each identifier

identifier = descriptor

local variable id 1, type int
method id 3, type bool = int

Scope

import printzf; global scope
1int x = 0;
volid main() 3 method scope
int x =1, vy = 2;
if (x > 0)
) block scope

int x = 3;
printf (“%d %d"”

, X +Y);

Symbol tables

— imported method

— global variable, type = int
- method, params =[], return type = void
— local variable, type = int
— |ocal variable, type = int

printt

X
mailn

X
y

/child of

X

— local variable, type = int

symbol table

Scope

import prints; global scope
int x = 0;

volid main() 3 method scope
int x =1, v = 2;
it (x > 0)
) block scope

int x = 3;
printf("%d %d", x + v);

Symbol tables: summary

* One symbol table per scope
« Each symbol table links to symbol table of parent
scope
* First search for identifier in current scope
* If not found, go to parent symbol table
» If not found In any table, semantic error!

Semantic checks

* Here are some types of semantic rules

Name issues

vold main() 3

int x, x; // R1l: x defined twice
1n same scope

y = 0; // R2: y not defined

Type errors: expressions

X[true] // R14

4 + true // R17

false == 1 // R18

4 && 5 // R19

array 1index

must be

1nt

. <arith_op> takes

two 1nts

<eq_op>
same ty

. <cond_o

takes
ne

0> takes

two bools

Type errors: assignments

int 1, arr|[];
bool b;

arr = 0; // R12 : cannot assign
to array

1 = true; // R20 : assignment type
must match
b++; // R21 : can only

increment 1ints

Miscellaneous rules

int arr[-1]; // R6: array size must
be positive

0223372036854775808
// R25: 1nt must be i1in bounds

Semantic checks

* Here are some types of semantic rules
* Name Issues
* Type errors
* Miscellaneous rules

* For the full list of rules,

Weekly updates
Phase 2 info
Phase 2 demo «

IR and semantic checking demo

Code available at:

https://github.com/6110-sp24/recitation3

