
Recitation 3: Project phase 2

February 23, 2024

6.110 Computer
Language Engineering

Weekly updates ←
Phase 2 info
Phase 2 demo

Animals
(not to scale)

Wrapping up phase 1…
•Project phase 1 is due today 11:59PM!!!
•We have OH from 2-7pm to help you
• LLM questionnaire due Monday, February 26

•You are allowed to share your phase 1 code with
potential teammates after the deadline.

Coming up soon…
•Team preference form due

Wednesday, February 28
•Project phase 2 has been released, due

Friday, March 8 (in two weeks)
•Miniquiz 3 and Weekly Check-in 4 released, due

Thursday, February 29.

Coming up soon… Week 4Mon
2/26

Tue
2/27

Wed
2/28

Thu
2/29

Fri
3/1

No lectures next week
Lectures will resume Mon 3/4

Recitation
x86 Assembly

OH 4-6pm Re-lecture
for Week 3
lectures

OH 4-6pm OH 2-7pm

Due: Team
preference
form

Due: Mini-quiz,
weekly check-in

Weekly updates
Phase 2 info ←
Phase 2 demo

Phase 5. How can we
make the output code faster?

import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

Phase 5. How can we
make the output code faster?

import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

Phase 2 overview
•Group project, in teams of 3-4. You’ll keep

working with the same group for all the
remaining phases.
•Goal: have a working compiler frontend that can

determine whether each input Decaf code is
semantically valid or not.

Team formation process
•Submit team preference form on Gradescope as

a group with your preferred teammates.
•We’ll match you up with other students/groups

to form groups of 3-4.
•Matching will be based on preferred language.
• You can also opt out of the matching process, but

note that there will be a lot of work per person for
smaller groups.

Specifications
•When running ./run.sh <filename> –t inter

on a semantically valid input file:
• Exits with return code 0 (OK)
• Produce no output

•You can decide how you want to implement your
IR and semantic checker.

Specifications
•When running ./run.sh <filename> –t inter

on a semantically invalid input file:
• Exit with nonzero return code (i.e. error)
• Outputs reasonable error messages to stderr.

(should include line/column number and the
identifier that caused the error)

•We’ll manually check your error messages.
• As long as they are reasonable, you’ll get full credit.

Submission and grading
•Phase 2 is worth 5% of the overall grade, due

Friday, March 8.
•Three items to be submitted on Gradescope
• Code submission
• Autograded tests: 2.5%
• Error messages: 1%

• Report: 1.5%
• Overview of approach, team status report, LLM

Getting started
•Once teams have been assigned, we will create

team repositories for you.
•We’ll initially use a placeholder name for your team

repository.
• If you’d like to name your team, please let us know

and we’ll change your repository name.
•You are allowed to use your team members’

phase 1 code.

Suggested approach
1. Convert parse tree or AST to a high-level IR by

traversing AST nodes and constructing symbol
tables.

2. Once you’ve finished constructing the IR,
perform semantic checks by traversing your
IR.

Symbol tables
•Stores relevant information about each identifier

identifier → descriptor
 x local variable id 1, type int
 f method id 3, type bool → int

import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0)
 {
 int x = 3;
 printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope

printf → imported method
x → global variable, type = int
main → method, params = [], return type = void
 x → local variable, type = int
 y → local variable, type = int

 x → local variable, type = int

,

Symbol tables
global symbol table

symbol table

symbol table

child of

child of

import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0)
 {
 int x = 3;
 printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope

Symbol tables: summary
•One symbol table per scope
• Each symbol table links to symbol table of parent

scope
•First search for identifier in current scope
• If not found, go to parent symbol table
• If not found in any table, semantic error!

Semantic checks
•Here are some types of semantic rules

Name issues
void main() {
 int x, x; // R1: x defined twice
 in same scope
 y = 0; // R2: y not defined
}

Type errors: expressions
x[true] // R14 : array index
 must be int
4 + true // R17 : <arith_op> takes
 two ints
false == 1 // R18 : <eq_op> takes
 same type
4 && 5 // R19 : <cond_op> takes
 two bools

Type errors: assignments
int i, arr[];
bool b;
arr = 0; // R12 : cannot assign
 to array
i = true; // R20 : assignment type
 must match
b++; // R21 : can only
 increment ints

Miscellaneous rules
int arr[-1]; // R6: array size must
 be positive

9223372036854775808
// R25: int must be in bounds

Semantic checks
•Here are some types of semantic rules
• Name issues
• Type errors
•Miscellaneous rules

•For the full list of rules, check the Decaf spec!

Weekly updates
Phase 2 info
Phase 2 demo ←

IR and semantic checking demo
Code available at:
https://github.com/6110-sp24/recitation3

https://github.com/6110-sp24/recitation3

