6.110 Computer
Language Engineering

March 1st, 2024

Weekly Updates «
x86 Quickstart

Weekly updates

* Everyone should already have teams
» Weekly miniquiz and check-in released, due

* Project phase 2 is due

* Quiz 1 is on
* Covers up to Codegen lectures
* Practice material will be posted soon
* Quiz review during re-lecture on

Coming up soon... Week 5

Mon Tue Wed Thu Fri
3/4 3/5 3/6 3/7 3/8
Lecture Lecture Lecture (?) Lecture (?) Recitation
Codegen CFGs, More
Codegen

Re-lecture
Codegen

Due: Mini-quiz,
weekly check-in

Due: Project
phase 2

Favorite Whitespace

Weekly Updates
x86 Quickstart «

Project overview

import printf;

void main() 3

Decaf source file

-

\

Phase 1. Does it have

the right structure?
(syntax)

Phase 2. Does it make

sense? (semantics)

_

v

name: a

Internal representation

push %rbp
mov ¥rsp, %rbp

_/—

x86-64 assembly

Why Now?

*For phase 2 you are asked to implement a high-level
Intermediate representation (IR) for semantic checking

*You may find that you will want to create an even
lower-level IR, or a Control Flow Graph representation

*The design of your IR needs to be informed by the
limitations of your code generator and x86 assembly

x86 Assembly

*Low-level programming language used to communicate
with hardware

«Can do (mostly) what you want, but there’s no safety net

*A reminder that a processor a digital circuit, and
hardware is required to perform operations (6.004)

Xx86 ISA

*An ISA Is the set of Instructions that software can issue to
hardware implementations (such as a CPU)

Standardized by various hardware manufacturers
*x86 is old, the first version (16-bit) was created in 1978

*Widely adopted despite its age

x86 Assembly

{ Decaf Program }

{ Corlmpiler }/v

{ Processor }

Coming from RISC-V...

*x86 Is considered a CISC (complex instruction set
computer) ISA

It has considerably more instruction
complexity/diversity than RISC (reduced instruction set
computer) ISAs

*As such, you will be able to perform more complex
operations in one assembly instruction than in RISC-V

Another note about x86

*x86 has two syntax styles

*Intel syntax and AT&T/NASM syntax

*We'll use AT&T syntax because it is the default in Linux
* The chief difference iIs the ordering of the operands

» Keep this in mind If you consult Intel manuals
(flip the operands in your head)

Decaf AT&T Syntax Intel Syntax

inta=100; movqg $100, -8(%rbp) mov [rbp-8], 100
intb = a; movqg -8(%rbp), -16(%rbp) mov [rbp-16], [rbp-8]

A Tour Through x86

*In general, instructions have the following format:

instr ret
instr argument call function
instr src, dst addqg $10, %rax

instr aux, src, dst imulq $2, %rcx, %rdx

Registers

» 16 registers available, some with “special” uses!

» %rax, %rdx used in arithmetic operations
* %rbp, %rsp (base pointer, stack pointer)

10 are caller-save, 6 are callee-save

Registers

« Can be further operated on as a 32 bit register, 16 bit
register, or two 8 bit registers

« Integers in Decaf are 64-bit, we will usually use the

entire register but GCC/Clang may optimize register
usage

64-bit

32-bit

16-bit ax

8-hit al

Calling Conventions

*Some registers are caller-save registers, which means
that you must save them before a call instruction

*Other registers are callee-save registers, which means
that you do not need to save them before a call
Instruction

*Useful to optimize how you allocate registers (phase 5),
but for now, focus on a working compiler

Arguments

*First 6 arguments are passed in registers
*%rdi, %rsi, %rdx, %rcx, %r8, %r9

*Any further arguments are passed on the stack

*This Is a convention. You are the compiler-writer, do what
you want (except when calling external functions)

Let’s Talk Instructions

Broadly, there are a few categories of instructions:

 Data transfer
 Control flow
* Arithmetic/Logic/Shift

Data Transfer

In general, you can transfer data:

« Between two registers (fastest)
 From an immediate to a memory location or register
« Between aregister and a memory location (slowest)

Note that virtually no instructions allow memory
locations as both operands

Examples

mov(
mov(
mov(
mov(

mov(

$1, %rax (move 1 to rax)

%rax, %rcx (move from rax to rcx)
-8(%rbp), %rax (move from rbp-8 to rax)
%rax, -8(%rsp) (move from rax to rbp-8)

-8(%rbp), -16(%rbp) (illegal)

Performance Considerations

There are multiple places to store variables and data:

* Globally (slowest)
* On the stack
« Inregisters (fastest)

Considerations for your IR

* How will you represent variables/arrays? How will you
assign them to be global or on the stack?

« Eventually, you will want certain variables in registers
(phase 5), how will you handle this?

* How will you represent constants? On the stack or
globally?

Control Flow

Differs significantly from RISC-V

* There are no instructions that do a compare and jump in one
Instruction: o _
* jmp - unconditional jump

« je/jl/ile/jg/jge/jne - examples of conditional jumps

* You must execute the empq instruction to set a special
“flag” register

- This flag register determines the behavior of the various
jump Instructions

Flag Register

* A 32 bit EFLAGS register is used to store state about the
CPU (and the result of certain math operations)

* Many of these are used for determining whether jumps,
conditional moves, conditional set bytes will execute

 Most arithmetic or logic instructions will clobber
(reset) these flag registers

Flag Register

eflags register

dl

dIA
dIA

>I<|T|nlZ
OZ'nO—|

1dOI

O
T

=

=]
d1
4S
=4
o
=\
=)
dd

=10

Reserved flags

System flags

Arithmetic flags

Image Credit:

https://www.nayuki.io/page/a-fundamental-introduction-to-x86-assembly-programming#4-flags-register-and-comparisons

Example

if (a < 5) {
b = 1;
} else {
b = 2;

cmpq $5, %rax
jl _if body
jge _else body
_if body:

mov(q $1, %rcx

jmp _exit
_else body:

movq $2, %rcx
_exit:

(...)

mov(q $1, %rax
mov(q $0, %rcx
jl _if body
jge _else body
_if body:

mov(q $1, %rcx

jmp _exit
_else body:

movq $2, %rcx
_exit:

(...)

Example

int a = 1; movq $1, %rax

. movq $0, %rcx

int b = @; cmpq $5, %rax
_exit:

mov(q $1, %rax
mov(q $0, %rcx
cmpq $5, %rax
jge _else body

mov(q $1, %rcx

jmp _exit
_else body:

movq $2, %rcx
_exit:

(...)

Considerations for your IR

 How might you structure your IR so that you can
accommodate this emp before jump requirement?

 How might you take advantage of fallthrough? Think
about how you would make blocks easy to move around
IN your representation

Hint: This will also be important for phase 4!

Doing Math

* Think like a circuit designer (6.004)
 How might you accomplish math operations?

* Which operations are expensive?
addq - 1 cycle
subqg - 1 cycle
Imulg - 3 cycles
idivqg - 42-95 cycles (yikes!)
(on Skylake-X CPUs)

Doing Math

* Some operations require operands to be placed In
specific registers

* idivq takes the 128-bit value stored in rdx:rax, divides
It by the argument register

* The quotient is placed in rax, the remainder in rdx
* This destroys whatever was stored there!

* Most math clobbers flag registers

Doing Math

« Some multiplications and divisions can be made cheap

If the}/ are by powers of 2
 shl/sar only takes 1 cycle!

« You cannot perform complex operations like 1 + (2 * 3)
* Must linearize the operation
(more about this next recitation)

t
i

2*3
1+t1

Considerations for your IR

 How might you design a low-level IR that can be easily
translated to x86 assembly?

 How might you represent complex operations?

Representing Functions

* Functions are “fake” in assembly - only labels/jumps
 What does it mean to “allocate” space on the stack?

* Byte alignment

Example

int add _2(int a) {
int b = 2;

return a + b;

int add_2(int a) { add_2:
push %rbp

% , %rb
return a + b; movq Arsp, Arop

subq $8, %rsp

int add_2(int a) { add_2:
int b = 2; push %rbp
movq %rsp, %rbp

return ;
subq $8, %rsp

movq $2, -8(%rbp)

void add 2(int a) {
int b = 2;

a + b;

add_2:
push
movq

subq

mov(

addq

mov(

%rbp
%rsp, %»rbp
$8, %rsp

$2J '8(%Pbp)

-8(%rbp), %rdi

%rdi, %rax

void add 2(int a) {

int b = 2;

return a + b;

void main(){

int c

9;

add_2:
push
movq

subq

mov(

addq

mov(

addq

mov(

pop
ret

%rbp
%rsp, %rbp
$8, %rsp

$2J '8(%Pbp)

-8(%rbp), %rdi

%rdi, %rax

$8, %rsp
%rbp, %rsp
%rbp

main:
push
movq

subg

movq

addg

movq

pop
ret

%rbp
%rsp, %rbp
$8, %rsp

$@J '8(%Pbp)

$8, %rsp
%rbp, %rsp
%rbp

“lower”
addresses

Callee

Caller

Local 3

Local 2

Local 1

Saved RBP

Return address

Argil

Argiz

Ar913

Local 3

Local 2

Local 1

Saved RBP

Return address

Stack

'SP

rbp

call

add_1

1. The return address is pushed (%rip)

add_2:
push

. %rip is set to address of procedure

%rbp

1. %rsp =%rsp -8

movq

subq

. copies %rbp to address in %rsp

%rsp, %rbp

. make %rsp equal %rbp

$24, %rsp

. allocates 24 bytes

Image Credit: NEU

“lower”
addresses

Callee

Caller

Local 3

Local 2

Local 1

Saved RBP

Return address

Argil

Argiz

ArgiB

Local 3

Local 2

Local 1

Saved RBP

Return address

Stack

'SP
add_2:
push %rbp
1. %rsp =%rsp -8
2. copies %rbp to address in %rsp
mov(%»rsp, %rbp
rbp 1. make %rsp equal %rbp

subq $24, %rsp
1. allocates 24 bytes

Image Credit: NEU

“lower”
addresses

Callee

Caller

Local 3

Local 2

Local 1

Saved RBP

Return address

Argil

Argiz

ArgiB

Local 3

Local 2

Local 1

Saved RBP

Return address

Stack

call add_1
1. The return address is pushed (%rip)
rsp 2. %rip is set to address of procedure

add_2:

mov(%»rsp, %rbp
rbp 1. make %rsp equal %rbp

subq $24, %rsp
1. allocates 24 bytes

Image Credit: NEU

“lower”
addresses

Callee

Caller

Local 3

Local 2

Local 1

Saved RBP

Return address

Argil

Argiz

ArgiB

Local 3

Local 2

Local 1

Saved RBP

Return address

Stack

rsp, rbp

call

add_1

1. The return address is pushed (%rip)

add_2:
push

. %rip is set to address of procedure

%rbp

1. %rsp =%rsp -8

subq

. copies %rbp to address in %rsp

$24, %rsp

. allocates 24 bytes

Image Credit: NEU

“lower”
addresses

Callee

Caller

Local 3

Local 2

Local 1

Saved RBP

Return address

Argil

Argiz

ArgiB

Local 3

Local 2

Local 1

Saved RBP

Return address

Stack

r'sp call add_1
1. The return address is pushed (%rip)
rbp 2. %rip is set to address of procedure

add_2:

push %rbp
1. %rsp =%rsp -8

2. copies %rbp to address in %rsp

mov(%»rsp, %rbp
1. make %rsp equal %rbp

Image Credit: NEU

Byte Alignment

* When calling external functions, your stack must be
16-byte aligned

* What to do when they are misalighed?
* Push a $0 to the stack
* You can optimize for this (phase 5)

High-Level IR

* You will probably want at least two versions of your IR
(high and low level)

* High-level IR
* Needed If you used a hacked grammar or a parser

generator to get the proper structure
* Not needed If your parser is hand-written and

well-designed

« Perform your semantics check at this stage (phase 2)

Low-Level IR

* This is closer to the assembly. Commonly in the form of a
control flow graph for ease of performing optimizations

* Have to consider all of the things we mentioned this
recitation!

« Based on x86, make informed decisions on how this
low-level IR can be structured

Low-Level IR

« Start early! This Is a representation that is farther from
the original Decaf.

* Don’t be afraid to refactor! You will make lots of changes
to this representation as you implement phases 3/4/5

« Design your high-level IR to be easy to convert (do not try
to generate low-level IR based on an parse tree alone)

Phase 2/3

» At the end of phase 2, you will be fairly close to a working
compiler

 Ifyou start thinking about your low-level IR

representation during phase 2, phase 3 will be much
easler to iImplement

* For groups that want to attempt SSA, which we will cover

In a coming recitation, this is a good time to start thinking
about It

Latency Tables / x86 Reference

https://www.felixcloutier.com/x86/
https://www.agner.org/optimize/instruction_tables.pdf

Appendix: Example Program

import printf;

void main() {
int 1;
for (i = 0; 1 < 30; i++) {
printf(“%d\n”, 1i);
}

return;

¥

import printf;

void main() {
int 1;
for (1 = 0; 1 < 30; i++) {
printf(“%d\n”, 1i);
}

return;

.globl main
print_str:
.string “%d\n”
.align 16

main:

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {
printf(“%d\n”, 1i);

¥

return;

.globl main
print_str:
.string “%d\n”

.align 16
main:
pushq %rbp
mov(%rsp, »rbp
subq $16, %rsp

import printf; .globl main
print_str:

void main() { -string “%d\n

. . .align 16
int 1; :
main:
for (1 = 0; 1 < 30; i++) { bushg %rbp
printf(“%d\n”, 1i); movq %rsp, %rbp
} subq $16, %rsp
return; movq $0, -8(%rbp)
} loop_ body:
leaq print_str(%rip), %rdi
movq -8(%rbp), %rsi
movq $0, %rax

call printf

import printf; .globl main

print_str:
.string “%d\n”
void main() { .align 16
int 1; main:
for (1 = 0; 1 < 30; i++) { pushq %rbp
printf(“%d\n”, i); movg #rsp, %rop
subq $16, %rsp
} movq $0, -8(%rbp)
return; loop body:

} leaq print_str(%rip), %rdi
movq -8(%rbp), %rsi
movq $0, %rax
call printf
addq $1, -8(%rbp)
cmpq $30, -8(%rbp)

jl loop_body

import printf; +globl main

print_str:
.string “%d\n”
void main() { _ -align 16
] . main:
1nt 1, pushq %rbp
for (i = 0; i < 30; i++) { movq %rsp, %rbp
subq $16, %rsp
printf(“%d\n”, 1i); novg $0, -8(%rbp)
} loop body:
leaq print_str(%rip), %rdi
return; mov(-8(%rbp), %rsi
} movq $0, %rax
call printf
addq $1, -8(%rbp)
cmpq $30, -8(%rbp)
jl loop body

addq $16, %rsp
movq %rbp, %rsp
popq %rbp

ret

Questions?

Good luck on phase 2!

Godbolt Example (time permitting)

