
Recitation 5: Phase 3 infosession

March 8, 2024

6.110 Computer
Language Engineering

Weekly updates ←
Phase 3 info
Phase 3 demo

Wrapping up phase 2…
•Project phase 2 is due today 11:59PM!!!
• This includes the report!
• Remember to add your teammates to the

submission!
• If you need last-minute help, please come to OH

today from 2-7pm.

New releases
•Project phase 3 has been released, due

Friday, April 5 (Friday after Spring Break)
•Miniquiz 5 and Weekly Check-in 6 are due

Thursday, March 14 🥧
• Reminder: these are graded on completion – please

submit!!

Quiz 1: Friday, March 15
• Quiz will be in class, worth 10% of the overall grade
• Covers lecture content up to yesterday’s lecture:
• Regex, context-free grammars
• Top-down parsing
• High-level IR and semantics
• Unoptimized codegen

• Past quizzes are now on course website
• Quiz review session on Wednesday, March 13 during re-

lecture time (4-6pm in 26-322).

Coming up soon… Week 6
Mon
3/11

Tue
3/12

Wed
3/13

Thu
3/14

Fri
3/15

No lectures next week
Lectures will tentatively resume Mon 3/18

Quiz 1
up to Codegen
lectures

Quiz review
(4-6pm in
26-322)

Due: Mini-quiz,
weekly check-in

Weekly updates
Phase 3 info ←
Phase 3 demo

Logistics and requirements

import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 3 overview
•Goal: have a fully working compiler!
• Unoptimized code generation – the goal is to be

correct, not to be fast
•Work in same teams, same GitHub repo from

Phase 2
• If you’d like to name your team, it’s still not too late!

Please let us know and we’ll change your repository
name.

Submission and grading
•Phase 3 is worth 15% of the overall grade, due

Friday, April 5.
•Two items to be submitted on Gradescope
• Code submission: 12% (all autograded)
• Design document: 3%
• Submit PDF on Gradescope and include in your

repository.

Specifications
•When running
./run.sh <filename> –t assembly
on a valid input file:
• Outputs x86-64 assembly code to the output file (or

stdout if –o is not specified)
•We’ll assemble using
gcc -O0 -no-pie output.s -o output.exe

Runtime checks
Your compiler should emit code that performs the
following runtime checks:
1. Array bounds checking: array index must be in

bounds (0 to length – 1, inclusive)
(if out of bounds, should terminate with exit code –1)

2. Control must not fall off the end of a method that
returns a value.
(if control falls off, should terminate with exit code –2)

Design document
• Explains technical details of phases 1-3
• Around 5 pages long
• Includes the following sections:

1. Design
2. Extras
3. Difficulties
4. Contribution

• If you used LLMs, also describe how you used them
and provide chat logs

1. Design
• Overview of your design, including design choices you

made and design alternatives you considered.
• This section should help us understand your code
• In particular, please include these:
• Explanation of the compilation steps (entry point, flow, etc)
• Discussion of your designs for

(i) high-level IR, (ii) semantic checker, (iii) low-level IR, and
(iv) code generator

2. Extras
•Any clarifications, assumptions, or additions you

made
•Any interesting debugging techniques, build

scripts, or approved libraries
•Anything cool you’d like to share!

3. Difficulties
•List of known problems with your project, and as

much as you know about the causes
•Any issues from phase 2 that you fixed

4. Contribution
•Brief description of how your team divided the

work.
• (This will not affect your grade.)

Suggested approach

import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

High-level IR
(AST)

Structured
control flow
if/else, loops,

break, continue

Complex
expressions
x+=y[4*z]/a

Phase 3
code generation

x86-64
assembly

push %rbp
mov %rsp, %rbp
…

Unstructured
control flow
jumps only!

Two-address
code

mulq $4, %rcx

x86-64
assembly

push %rbp
mov %rsp, %rbp
…

High-level IR
(AST)

Structured
control flow
if/else, loops,

break, continue

Complex
expressions
x+=y[4*z]/a

Unstructured
control flow
jumps only!

Two-address
code

mulq $4, %rcx

Low-level IR
(CFG)

s = 0;
a = 4;
i = 0;
k == 0

b = 2;b = 1;

i < n

s = s + a*b;
i = i + 1; return s;

Unstructured
control flow

edges = jumps

Three-address
code

t1 ← 4 * z

Destructuring

Linearizing

Code
generation

Note: The TAs recommend using a linearized CFG.
This is different from what is shown in lecture
slides, but will make code generation and
optimizations in future phases a lot simpler!

CFG
•Nodes = computation
• Can be basic blocks, i.e. list of instructions, where

there are no branches in/out in the middle of a basic
block
• Another approach is to use single-statement

blocks, i.e. treat every instruction as being in a
separate block

•Edges = control flow

Destructuring control flow
•Keep in mind that Decaf has short-circuiting

boolean operations everywhere
•As in codegen lecture slides, can be

implemented using two recursive functions:
• destruct : destructs statement-level control flow

(if/else, for, while, break, continue)
• shortcircuit : deals with expression-level control

flow (&&, ||)

Linearizing expressions
•We suggest using a flat list approach
•Recursive function linearize (shortened as L)
• Input: an expression node (x op y)
• Output: a pair (i,v) where i is a list of three-

address instructions, and v is the variable that stores
the result
• If (ix,vx) = L(x) and (iy,vy) = L(y) then
L(x op y) = (ix + iy + [z = vx op vy], z)

Code generation
• General approach:
• Allocate space for globals
• Output code for each function separately. For each function,

output prolog, then body, then epilog
• Use templates for each pattern (operation, control

flow, etc.)
• If you don’t know what to do, use Godbolt to see what

gcc/clang does
• You’ll have to deal with various quirks of x86-64

assembly. Make sure to look at the x86-64 references.

printf
• You need to support printf!
• Decaf does not have I/O functions, so this is the only

way we can test your code
• printf is special:
• Stack (%rsp) needs to be 16-byte aligned when printf is

called (or when any external function is called)
• %rax needs to contain the number of floating point

arguments (always 0 for Decaf code)
•Make sure you pass the public test cases with printf

exit codes
•To set a nonzero exit code, use the exit

syscall
• In Linux (which is what the autograder is

running), this is syscall number 60
•Use syscall in assembly
• %rax should be set to 60 (syscall number)
• %rdi (first argument) should be set to exit code

General words of advice
•Start early!
•We give you a lot of time for this phase because it’s

usually the longest phase.
•Have regular team meetings.
• From our experience, it’s easiest to get things done if

you’re working all together in person. Pick a regular
time and place for meetings and stick to it!

General words of advice
•Do the simplest thing.
• Don’t worry about performance of the generated

code. You’ll have the entire second half of the
semester to do optimizations.

•Keep abstraction level consistent.
• It’s fine (maybe even a good idea) to have many IRs

and many passes through IRs, but try to keep each
IR self-consistent!

Weekly updates
Phase 3 info
Phase 3 demo ←

Phase 3 demo
Code available at:
https://github.com/6110-sp24/recitation5

https://github.com/6110-sp24/recitation5

