6.110 Computer
Language Engineering

March 8, 2024

Weekly updates «
Phase 3 info
Phase 3 demo

Wrapping up phase 2...

* Project phase 2 is due today 11:59PM!!!
* This includes the report!

 Remember to add your teammates to the
submission!

» If you need last-minute help, please come to OH
today from 2-7pm.

New releases

* Project phase 3 has been released, due
(Friday after Spring Break)

* Miniquiz 5 and Weekly Check-in 6 are due
@

4

* Reminder: these are graded on completion — please
submit!!

Quiz 1:

* Quiz will be In class, worth 10% of the overall grade

» Covers lecture content up to yesterday’s lecture:
* Regex, context-free grammars
* Top-down parsing
* High-level IR and semantics
« Unoptimized codegen

» Past quizzes are now on course website

* Quiz review session on during re-
lecture time (4-6pm in 26-322).

Coming up soon... Week 6

Mon Tue Wed Thu Fri
3/11 3/12 3/13 3/14 3/15
No lectures next week Quiz 1
Lectures will tentatively resume Mon 3/18 up to Codegen
lectures

Quiz review
(4-6pm in
26-322)

Due: Mini-quiz,
weekly check-in

Weekly updates
Phase 3 info «
Phase 3 demo

Logistics and requirements

import printf;

void main() 3

Decaf source file

-

the right structure?
(syntax)

sense? (semantics)

_

N

Phase 1. Does it have

Phase 2. Does it make

/

name: a

name: a

Internal representation

push %xrbp
mov %rsp, %rbp

_/—

x86-64 assembly

Phase 3 overview

» Goal: have a fully working compiler!

» Unoptimized code generation — the goal is to be
correct, not to be fast

* Work in same teams, same GitHub repo from
Phase 2

o If you’d like to name your team, it’s still not too late!
Please let us know and we’ll change your repository
name.

Submission and grading

* Phase 3 is worth 15% of the overall grade, due

* Two items to be submitted on Gradescope
» Code submission: 12% (all autograded)

* Design document: 3%

» Submit PDF on Gradescope and include in your
repository.

Specifications
* When running

on a valid input file:

* Qutputs x86-64 assembly code to the output file (or
stdout if —0 is not specified)

* We'll assemble using

Runtime checks

Your compiler should emit code that performs the
following runtime checks:

1. Array bounds checking: array index must be In

bounds (0 to length — 1, inclusive)
(if out of bounds, should terminate with exit code -1)

2. Control must not fall off the end of a method that
returns a value.
(if control falls off, should terminate with exit code -2)

Design document

* Explains technical details of phases 1-3
* Around 5 pages long

 Includes the following sections:
1. Design
2. Extras
3. Difficulties
4. Contribution

o If you used LLMs, also describe how you used them
and provide chat logs

1. Design

* Overview of your design, including design choices you
made and design alternatives you considered.

* This section should help us understand your code

 In particular, please include these:
« Explanation of the compilation steps (entry point, flow, etc)

 Discussion of your designs for
(i) high-level IR, (ii) semantic checker, (iii) low-level IR, and
(iv) code generator

2. Extras

* Any clarifications, assumptions, or additions you
made

* Any Interesting debugging techniques, build
scripts, or approved libraries

* Anything cool you’d like to share!

3. Difficulties

* List of known problems with your project, and as
much as you know about the causes

* Any Issues from phase 2 that you fixed

4. Contribution

* Brief description of how your team divided the
work.

* (This will not affect your grade.)

Suggested approach

import printf;

void main() 3

Decaf source file

-

the right structure?
(syntax)

sense? (semantics)

_

N

Phase 1. Does it have

Phase 2. Does it make

/

name: a

name: a

Internal representation

push %xrbp
mov %rsp, %rbp

_/—

x86-64 assembly

High-level IR
(AST)

_

Structured
control flow
If/else, loops,

break, continue y

-

\.

\
Complex
expressions

push %rbp
mov %rsp, %rbp

x+=y[4*xz]/a
Y,

_/—
Xx86-64
assembly
4)
Unstructured
control flow
jumps only!

g J
4)
Two-address
code
mulg $4, %rcx
_ J

High-level IR
(AST)

_

Structured
control flow
If/else, loops,

break, continue

Destructuring

-

\.

Complex
expressions
x+=y[4*xz]/a

Linearizing

Low-level IR
(CFQG)

-

_

Unstructured
control flow
edges = jumps

~

J

-

\.

Three-address
code
t1l « 4 % Z

~

J

Code
generation

—

push
mov

_/—

x86-64
assembly

%rbp
%rsp, %rbp

4)
Unstructured
control flow

jumps only!

_
-

J

~
Two-address
code

mulg $4, %rcx
_ y,

Note: The TAs recommend using a linearized CFG.
This is different from what is shown in lecture
slides, but will make code generation and
optimizations in future phases a lot simpler!

CFG

*Nodes = computation

* Can be basic blocks, i.e. list of instructions, where

there are no branches in/out in the middle of a basic
block

* Another approach is to use single-statement
blocks, i.e. treat every instruction as being in a
separate block

* Edges = control flow

Destructuring control flow

* Keep in mind that Decaf has short-circuiting
boolean operations everywhere

* As In codegen lecture slides, can be
implemented using two recursive functions:
. destructs statement-level control flow
(if/else, for, while, break, continue)

. deals with expression-level control
flow (&&, | |)

Linearizing expressions

* We suggest using a flat list approach

* Recursive function (shortened as 1)
* Input: an expression node
e Qutput: a pair where 1 1s a list of three-
address instructions, and v i1s the variable that stores
the result

o If and then

Code generation

* General approach:

* Allocate space for globals

* Qutput code for each function separately. For each function,
output prolog, then body, then epilog

» Use templates for each pattern (operation, control
flow, etc.)

» If you don’t know what to do, use Godbolt to see what
gcc/clang does

* You'll have to deal with various quirks of x86-64
assembly. Make sure to look at the x86-64 references.

printt

* You need to support printf!

» Decaf does not have I/O functions, so this Is the only
way we can test your code

* printf is special:
 Stack () needs to be 16-byte alighed when printf is
called (or when any external function is called)

needs to contain the number of floating point
arguments (always O for Decaf code)

* Make sure you pass the public test cases with printf

exit codes

*To set a nonzero exit code, use the
syscall

*In Linux (which is what the autograder is
running), this is syscall number 60

* Use In assembly

should be set to 60 (syscall number)
(first argument) should be set to exit code

General words of advice

» Start early!

* We give you a lot of time for this phase because it’s
usually the longest phase.

* Have regular team meetings.

* From our experience, it’s easiest to get things done if
you’'re working all together in person. Pick a regular
time and place for meetings and stick to it!

General words of advice

* Do the simplest thing.

* Don’t worry about performance of the generated
code. You'll have the entire second half of the
semester to do optimizations.

- Keep abstraction level consistent.

« It’s fine (maybe even a good idea) to have many IRs
and many passes through IRs, but try to keep each
IR self-consistent!

Weekly updates
Phase 3 info
Phase 3 demo «

Phase 3 demo

Code available at:
https://github.com/6110-sp24/recitationb

https://github.com/6110-sp24/recitation5

