
Recitation 7: Phase 4 infosession

April 5, 2024

6.110 Computer
Language Engineering

Weekly updates ←
Phase 4 info

Wrapping up phase 3…
•Project phase 3 is due today 11:59PM!!!
• This includes the report!
• Remember to add your teammates to the

submission!
• If you need last-minute help, please come to OH

today from 2-7pm.

New releases
•Project phase 4 has been released, due

Friday, April 19
•Phase 3 LLM questionnaire due Monday, April 8
• Counts as extra credit towards participation grade

•Miniquiz (will be posted soon) and Weekly Check-in
are due Thursday, April 11
• Reminder: these are graded on completion – please

submit!!

Lecture forecast… Week N+1
Mon
4/8

Tue
4/9

Wed
4/10

Thu
4/11

Fri
4/12

Lectures
Foundations of Dataflow (will take approximately 3 days)

No recitation
(CPW)

Due:
Phase 3 LLM
questionnaire

Re-lecture
Optimizations

Due:
Mini-quiz,
weekly check-in

Lecture forecast… Week N+2
Mon
4/15

Tue
4/16

Wed
4/17

Thu
4/18

Fri
4/19

Holiday
Patriots’ Day

No lecture Guest
Lecture
Yaron Minsky
(Jane Street)

No lecture Recitation
Phase 5
infosession

Re-lecture
Foundations of
dataflow

Due:
Mini-quiz,
weekly check-in

Due: Project
phase 4

Weekly updates
Phase 4 info ←

Project overview
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

So we have a working compiler now…*
what next?

* Or by the end of today

Project overview
import printf;

void main() {
…

Decaf source file Optimized
x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

Phase 5. How can we
make the output code faster?

Project overview
import printf;

void main() {
…

Decaf source file Even more optimized
x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

From now on, the project becomes more open-ended.

We’ll require some specific optimizations, but other than
that you are free to implement whatever your heart
desire.

At the end of phase 5, there will be a compiler derby to
find which team’s compiler produces the fastest code!

Logistics and requirements

Phase 4 overview
•Required: implement at least one of the

following global dataflow optimizations
• Copy propagation
• Common subexpression elimination
• Dead code elimination

•Optimization should at least work on
statements involving local (non-array)
variables

Dataflow analysis: overview
• A form of program analysis: compile-time reasoning about program

behavior
• Store some information we’ve learned about the program at each

program point (CFG node)
• At each node, need to update information based on content of the

node (“transfer function”), and propagate information to successor
nodes (or predecessors for backwards analyses)
• At merge points, need to combine information somehow
• Iterate until we reach a fixed point
• More of this formalization in next week’s lectures!

Copy propagation
• Propagate copies (assignments like a ← b)
• Based on Reaching definitions analysis: which definitions of

each variable reaches each program point*

a ← b
c ← a + 1

a ← b
c ← b + 1

Before After

Copy propagation
• Be careful about this!

• One way to avoid: just keep track of which variables
are copies of each other instead of using reaching
definitions

a ← b
b ← c
d ← a

a ← b
b ← c
d ← b ???

Dead code elimination
• Remove code that computes variables that are not used
• Based on Liveness analysis: which variables are “live” (has a

use afterwards)

a ← x + y
x ← a + b

(a is global, x is local)

a ← x + y

Before After

Common subexpression elimination
• Only compute an expression once
• Based on Available expressions analysis: which expressions

defined earlier are still valid (operands not modified)

a ← x + y
b ← x + y
x ← a

c ← x + y

t1 ← x + y
a ← t1
b ← t1
x ← a

c ← x + y
Before After

Summary
Optimization Analysis

Copy propagation Reaching definitions*
*be careful

Common subexpression
elimination

Available expressions

Dead code elimination Liveness

Summary

Phase 4 overview (cont’d)
•Optional: extend optimizations to global variables and

array variables
•Optional: other optimizations (more info in handout)
• Constant propagation and folding
• Loop-invariant code motion
• Unreachable code elimination
• Algebraic simplification (not dataflow)
• ...

Submission and grading
• Phase 4 is worth 10% of the overall grade,

due Friday, April 19.
• Two items to be submitted on Gradescope
• Design document (8%)
• Overall dataflow framework (3%)
• Details of implemented dataflow optimizations (4%)
• Extras, difficulties, and contributions (1%)

• Code submission, autograded on correctness only (2%)
• No private test cases
• Output code should be correct with and without optimizations

Specifications
• Your compiler should be correct with or without

optimizations
•When running
./run.sh <filename> –t assembly
on a valid input file:
• Outputs x86-64 assembly code to the output file (or stdout

if –o is not specified)
•We’ll assemble using
gcc -O0 -no-pie output.s -o output.exe

CLI for optimizations
• -O cse turns on common subexpression elimination only
• -O dce turns on dead code elimination only
• -O cp,cse turns on copy propagation and common

subexpression elimination only
• -O all turns on all optimizations (we’ll run the

autograder with this option)
• -O all,-cse turns on all optimizations except common

subexpression elimination

Design document
• Explains technical details
• Includes the following sections:

1. Design (including general dataflow framework and specific
details for each implemented optimization)

2. Extras
3. Difficulties
4. Contribution

• If you used LLMs, also describe how you used them
and provide chat logs

1. Design
• Overview of your design, including design choices you

made and design alternatives you considered.
• This section should help us understand your code
• In particular, please include:
• Your general framework for dataflow optimizations

(worth 3%)
• Details of each dataflow optimization you implemented

(worth 4%, more info on next slide)

1. Design — details
• For each dataflow optimization you implemented,

please include:
• the scope of the optimization (did you take into account

global variables and/or array variables?)
• the dataflow equations you used
• a sample test case, with generated code before and after,

included under doc/phase4-code/ in your repository
• a brief explanation of how your dataflow optimization

worked

Other sections (worth 1%)

2. Extras:
• Any clarifications, assumptions, or additions you made
• Any interesting debugging techniques, build scripts
• Anything cool you’d like to share!

3. Difficulties:
• List of known problems with your project, and as much as you know

about the cause
• Any issues from phase 3 that you fixed

4. Contributions: A brief description of how your group divided the work

Words of advice

•Start simple!
• Start with very simple test cases so that you

understand what’s happening
• Start with local non-array variables only, and only

add global variables / array variables after you can
get the analysis to work on local variables

•Keep things general
• Various dataflow analyses

can all be written in terms
of a transfer function and a
meet function
• Consider making a

parametrized dataflow
framework
• Next week’s lecture will

cover this formalization

•Consider using single-statement blocks
•More time/memory-consuming but who cares
• No need to propagate information inside a basic

block
• One tricky thing: Need to be able to add/remove

nodes/merge points/join points.

•Use array of nodes, not pointer-and-objects
• Key: Need to be able to remove/add statements
• Especially relevant if you don't use basic blocks
• You will need adjacency list and reverse adj. list

