
Recitation 8: Phase 5 infosession

April 19, 2024

6.110 Computer
Language Engineering

Weekly updates ←
Phase 5 info

Wrapping up phase 4…
•Project phase 4 is due today 11:59PM!!!
• This includes the report!
• Remember to add your teammates to the

submission!
• If you need last-minute help, please come to OH

today from 2-7pm.

New releases
• Project phase 5 has been released, due

Monday, May 13
• Phase 4 LLM questionnaire due Monday, April 22
• Counts as extra credit towards participation grade

•Weekly Check-in and mini-quiz are due Thursday, April
25
• We promise to actually release a mini-quiz by this weekend
• Reminder: these are graded on completion – please submit!!

Quiz 2: Friday, May 3
• Quiz will be in class, worth 10% of the overall grade
• Covers lecture content after Quiz 1:
• Program analysis
• Foundations of dataflow
• Register allocation
• Loop optimizations
• Parallelization

• Past quizzes are on course website
• Quiz review session on Wednesday, May 1 during re-lecture

time (4-6pm in 26-322).

Weekly plan: Week N+1
Mon
4/22

Tue
4/23

Wed
4/24

Thu
4/25

Fri
4/26

No lectures for the rest of the semester Recitation
TBD

Due:
Phase 4 LLM
questionnaire

Re-lecture
Optimizations

Due:
Mini-quiz,
weekly check-in

Weekly plan: Week N+2
Mon
4/29

Tue
4/30

Wed
5/1

Thu
5/2

Fri
5/3

No lectures for the rest of the semester Quiz 2
Dataflow and
optimizations

Quiz review
(4-6pm in
26-322)

Due:
Weekly check-in

Weekly updates
Phase 5 info ←

Phase 5. How can we
make the output code faster?

Project overview
import printf;

void main() {
…

Decaf source file Even more optimized
x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)

Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

Again, we’ll require one specific optimization, but other
than that you are free to implement whatever your heart
desire.

On the last day of class (May 14), there will be a
compiler derby to find which team’s compiler produces
the fastest code!

Logistics and requirements

Phase 5 overview
•Generate correct code that is as fast as possible!
•Required: implement register allocation
• You can choose between graph coloring or

linear scan
•Optional: everything else!
•More dataflow optimizations
• Peephole optimizations
• Instruction selection and scheduling
• Parallelization (e.g. data parallelization, SIMD)

Notes on performance testing
•Test cases from previous phases are too simple

to be used as effective benchmarks.
•We’ll run your compiler on a benchmark suite of

more complex programs simulating real-world
workloads.
• Some of these will be released; others will only be

available on the autograder

Notes on performance testing
•We strongly recommend setting up a

benchmarking framework locally.
• This should provide a much tighter feedback loop

than using the autograder.
• Use provided benchmarks + your own benchmarks
• Some provided tests require linking with the provided

library in derby/lib/
• Recommendation: use Hyperfine for simple timing,

use tools like gprof or perf for profiling

https://github.com/sharkdp/hyperfine

Phase 5 autograder
• The autograder for phase 5 will work a bit differently

from previous phases.
•We have a dedicated server that will execute

submissions in a round-robin fashion, one at a time. We
expect performance variations to be less than 5%
• CPU information is available on the course website

(https://6110-sp24.github.io/phase-5#phase-5-
autograder-information)

https://6110-sp24.github.io/phase-5
https://6110-sp24.github.io/phase-5

Submission
•Phase 5 is due Monday, May 13.
•As usual, two items to be submitted on
Gradescope
•Design document
•Code submission

•Submission is both for Phase 5 and for the
whole compiler project

Grading
• 10%: required Phase 5 tasks:
• Register allocation
• Design document – explains choice of optimizations in -O
all and design of register allocator

• 30%: overall compiler project
• Remaining parts of design document (5%)
• Correctness (15%), based on previous test cases +

benchmark suite
• Performance on Derby benchmark suite (10%)
• We’ll have pre-set cutoffs

Specifications
• Your compiler should be correct with or without

optimizations
•When running
./run.sh <filename> –t assembly
on a valid input file:
• Outputs x86-64 assembly code to the output file (or stdout

if –o is not specified)
•We’ll assemble using
gcc -O0 -no-pie output.s -o output.exe

CLI for optimizations
Same as phase 4!
• -O cse turns on common subexpression elimination only
• -O regalloc turns on register allocation only
• -O cse,regalloc turns on common subexpression elimination and

register allocation only

• -O all turns on “all optimizations”
(we’ll test performance with this option)
• This means “put all your best effort at producing the fastest code”
• You decide which optimizations are actually run, in which order, and

how many times

Design document
• Explains technical details for the whole project

(you can reuse portions of previous design documents)
• Includes the following sections:

1. Design (for Phase 5: discussion of “all optimizations” option and
each optimization you implemented)

2. Extras
3. Difficulties
4. Contribution

• If you used LLMs, also describe how you used them
and provide chat logs

1. Design
• Overview of your design, including design choices you made

and design alternatives you considered.
• This section should help us understand your code
• For Phase 5, please include:
• A detailed discussion of your -O all option, including which

optimizations are performed, which order they are performed in, how
many times they are performed, and how you arrived at this choice
• Details of each optimization you implemented (more info on next

slide)

1. Design — details
• For each optimization you implemented, please

include:
• a brief explanation of how your optimization worked (this

should convince your reader that the optimization was
beneficial, general, and correct)
• a sample test case, with generated code before and after,

included under doc/phase5-code/ in your repository
• if possible, include empirical evidence that proves the

effectiveness of your optimization.

Other sections
2. Extras:
• Any clarifications, assumptions, or additions you made
• Any interesting debugging techniques, build scripts
• Anything cool you’d like to share!

3. Difficulties:
• List of known problems with your project, and as much as you know

about the cause
• Any issues from previous phases that you fixed

4. Contributions: A brief description of how your group divided the work

Some optimizations
plus some comments

Graph-coloring regalloc
(i.e. regalloc taught in lecture)
1. Compute webs based on def-use chains
2. Compute interference graph between webs
3. Assign registers by coloring interference graph, and

spill if necessary
• Heuristics for spilling can be important!

See also Ch. 16 of Whale book / Ch 9.7 of Dragon book
We suggest this if you want the best performance

Linear scan regalloc
Assumes a linear representation of IR instead of a CFG
structure (i.e. give every statement/block a unique
integer id and order your IR by that id)
• Compute live intervals instead of webs
•Makes register allocation much simpler and faster at

compile-time, but is worse at run-time
See paper: https://dl.acm.org/citation.cfm?id=330250
We suggest this if you want the simplest option

https://dl.acm.org/citation.cfm?id=330250

Phase 4 dataflow optimizations
All three
optimizations
work together
really well,
especially if
you can deal
with array
elements

Constant optimizations
• Constant propagation: propagate values of constants

at compile time
• Constant folding: evaluate constant expressions at

compile time
• Algebraic simplification: simplify expressions like a +

0, a * 1, etc..
These are relatively simple to implement and pretty
helpful

Peephole optimizations
Basically “find-and-replace” on emitted instructions +
instruction selection. Examples:
• Replace x / 8 by x >> 3
• Remove jumps to the label immediately after
• Remove push immediately followed by pop to same register
Resources: Agner Fog’s instruction tables,
https://uica.uops.info
This is easy to implement and pretty helpful!

https://uica.uops.info/

Loop optimizations
Loop-invariant code hoisting: move code that
always compute the same thing out of the loop
• Can be helpful if the thing that’s being recomputed

again and again is expensive, but can also lead to larger
webs in regalloc

Induction variable optimizations
• Best for array accesses, generally not the most helpful

for Decaf

Function inlining
Replace a call to a function f by the body of f.
•Can help with dataflow + register allocation (can

now reason about variables across the function
call boundary)
•Also helps with tail recursion

Instruction scheduling
Reorder instructions to reduce immediate dependencies
• Recall 6.004: we want to use many stages of the

pipeline at once! If there’s a data dependency then we
can’t do this

Resources: Whale book Ch. 17, Agner Fog’s instruction
tables, https://uica.uops.info

https://uica.uops.info/

Parallelization
Do multiple operations in parallel, e.g.
•SIMD: emit vector instructions that operate on

multiple pieces of data at once
•Data parallelization across iterations of a loop

⚠ Parallelization is very tricky to get right. If
you want to try this, please talk to the TAs. ⚠

Words of advice

•Start simple!
• Start with very simple test cases so that you

understand what’s happening

•Test often, both for correctness and
performance
• An optimization needs to be correct, and you should

make sure it’s actually making the generated code
faster.

•Think about what optimizations to implement,
and also how to implement each optimization
most effectively
• Some optimizations go well together, e.g. common

subexpression elimination + dead code elimination
• Improving some optimizations (e.g. add dataflow for

array elements) might be more worth it than trying to
implement a whole new optimizations
• Freeing another register for your regalloc to freely

use can also be surprisingly helpful

•Focus on the slowest parts first
• A program can’t be faster than its slowest part. It’s

much more worth it to optimize the slow part than
the part that’s already fast.

•The little things also matter
• You will likely find a lot of small inefficiencies in your

generated code. They add up.

